U-tiling: UQC4196
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc868 |
*2224 |
(4,3,2) |
{4,3,4,4} |
{4.6.4.6}{4.6.6}{6.6.6.6}{6.6.6.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc8159
|
|
I4/mmm |
139 |
tetragonal |
{3,4,4,4} |
18 |
(4,3) |
G
|
False
|
|
sqc12456
|
|
I41/acd |
142 |
tetragonal |
{4,3,4,4} |
36 |
(4,4) |
D
|
False
|
|
sqc8131
|
|
P42/nnm |
134 |
tetragonal |
{4,3,4,4} |
18 |
(4,3) |
Topological data
Vertex degrees | {4,3,4,4} |
2D vertex symbol | {4.6.4.6}{4.6.6}{6.6.6.6}{6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<82.2:256:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256,17 10 35 5 7 40 25 43 13 15 48 26 51 21 23 56 67 29 31 72 49 58 37 39 65 74 45 47 82 53 55 81 187 61 63 192 98 69 71 97 219 77 79 224 235 85 87 240 113 106 131 93 95 136 251 101 103 256 137 155 109 111 160 138 171 117 119 176 161 154 179 125 127 184 169 146 133 135 203 141 143 208 193 211 149 151 216 201 157 159 202 227 165 167 232 194 173 175 225 210 181 183 233 218 189 191 243 197 199 248 205 207 241 213 215 249 221 223 242 229 231 250 237 239 245 247 253 255,3 4 13 14 95 96 11 12 111 112 19 20 29 30 119 120 27 28 143 144 35 36 61 62 127 128 43 44 77 78 151 152 51 52 85 86 167 168 59 60 159 160 67 68 101 102 199 200 75 76 135 136 83 84 207 208 91 92 109 110 99 100 175 176 107 108 115 116 141 142 123 124 157 158 131 132 149 150 139 140 147 148 155 156 163 164 205 206 171 172 197 198 179 180 213 214 223 224 187 188 221 222 215 216 195 196 203 204 211 212 219 220 227 228 245 246 255 256 235 236 253 254 247 248 243 244 251 252:4 6 6 6 6 4 4 6 6 6 4 6 6 6 6 4 6 4 6 6 6 4 4 6,4 3 4 4 4 4 3 4 4 4 3 4 3 4 3 4 4 3 4 4 4 3 4 3 4 3 3 4 3 3 3 4 3 3 4 3> {(1, 121): 't3', (1, 120): 't3', (1, 250): 't2^-1', (2, 189): 'tau1^-1', (2, 180): 'tau1', (2, 181): 'tau1', (1, 249): 'tau1*t3^-1', (2, 60): 't3^-1', (1, 247): 't2', (2, 44): 't2', (2, 45): 't2', (2, 174): 'tau3^-1', (2, 175): 'tau3^-1', (2, 252): 'tau1*t3^-1', (1, 96): 't2', (2, 166): 'tau2', (2, 167): 'tau2', (1, 103): 't2', (2, 156): 't3^-1', (2, 157): 't3^-1', (2, 148): 't2', (2, 149): 't2', (2, 22): 't1^-1', (2, 23): 't1^-1', (1, 73): 't2^-1', (1, 241): 'tau1^-1*t3', (2, 142): 't1', (2, 143): 't1', (1, 176): 't3', (2, 61): 't3^-1', (1, 192): 't2^-1', (1, 184): 't3^-1', (1, 194): 't2^-1', (1, 57): 't3^-1', (1, 56): 't3^-1', (2, 254): 't2^-1*tau3*t1*tau2^-1', (2, 255): 't2^-1*tau3*t1*tau2^-1', (2, 245): 'tau1^-1*t3', (2, 246): 't2*tau3^-1*t1^-1*tau2', (2, 247): 't2*tau3^-1*t1^-1*tau2', (2, 237): 't3*tau1^-1', (2, 228): 't3^-1*tau1', (1, 217): 'tau1', (2, 220): 'tau1', (1, 145): 't2', (1, 209): 'tau1^-1', (2, 206): 'tau2', (2, 207): 'tau2', (2, 198): 'tau3^-1', (2, 199): 'tau3^-1'}