U-tiling: UQC4254
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1090 |
*2244 |
(4,5,2) |
{4,4,8,4} |
{4.4.4.4}{4.5.5.4}{5.5.5.5.5.5.5... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc1505
|
|
P4/mmm |
123 |
tetragonal |
{4,4,6} |
7 |
(3,5) |
G
|
False
|
|
sqc8512
|
|
I41/a |
88 |
tetragonal |
{4,4,8,4} |
16 |
(4,5) |
D
|
False
|
|
sqc8573
|
|
I41/amd |
141 |
tetragonal |
{4,4,8,4} |
16 |
(4,5) |
Topological data
Vertex degrees | {4,4,8,4} |
2D vertex symbol | {4.4.4.4}{4.5.5.4}{5.5.5.5.5.5.5.5}{5.5.5.5} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<71.1:144:55 3 58 59 7 9 64 12 67 68 16 18 73 21 76 77 25 27 91 30 94 95 34 36 100 39 103 104 43 45 82 48 85 86 52 54 57 61 63 66 70 72 75 79 81 84 88 90 93 97 99 102 106 108 136 111 139 140 115 117 127 120 130 131 124 126 129 133 135 138 142 144,2 4 6 8 63 11 13 15 17 72 20 22 24 26 81 29 31 33 35 99 38 40 42 44 108 47 49 51 53 90 56 58 60 62 65 67 69 71 74 76 78 80 83 85 87 89 92 94 96 98 101 103 105 107 110 112 114 116 144 119 121 123 125 135 128 130 132 134 137 139 141 143,10 56 57 5 60 61 26 27 65 66 14 69 70 35 36 37 74 75 23 78 79 46 92 93 32 96 97 101 102 41 105 106 125 126 83 84 50 87 88 143 144 64 59 89 90 68 107 108 100 77 116 117 91 86 95 134 135 104 127 137 138 113 141 142 136 128 129 122 132 133 131 140:4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5,4 4 8 4 4 8 4 4 4 4 4 4 4 4 4 4> {(2, 60): 't1', (2, 56): 't1', (2, 59): 't1', (2, 55): 't1', (2, 50): 't2^-1*tau3', (2, 51): 't2^-1*tau3', (2, 45): 't2^-1', (2, 46): 't2^-1*tau3', (2, 47): 't2^-1*tau3', (2, 41): 't3^-1*tau2^-1', (2, 42): 't3^-1*tau2^-1', (2, 36): 't3^-1', (2, 37): 't3^-1*tau2^-1', (2, 38): 't3^-1*tau2^-1', (2, 32): 'tau3*t2^-1', (2, 33): 'tau3*t2^-1', (2, 28): 'tau3*t2^-1', (2, 29): 'tau3*t2^-1', (2, 24): 'tau2^-1*t3^-1', (2, 20): 'tau2^-1*t3^-1', (2, 23): 'tau2^-1*t3^-1', (2, 19): 'tau2^-1*t3^-1', (2, 140): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 141): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 14): 't1^-1', (2, 15): 't1^-1', (2, 136): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 137): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 10): 't1^-1', (2, 11): 't1^-1', (2, 132): 't2*tau3^-1*t1^-1*tau2*t3', (2, 135): 'tau1', (2, 128): 't2*tau3^-1*t1^-1*tau2*t3', (2, 131): 't2*tau3^-1*t1^-1*tau2*t3', (2, 126): 'tau1^-1', (2, 127): 't2*tau3^-1*t1^-1*tau2*t3', (2, 99): 't3^-1', (2, 90): 't2'}