U-tiling: UQC4322
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1207 |
*2244 |
(4,4,2) |
{4,3,12,4} |
{5.5.5.5}{5.4.5}{5.4.4.5.4.4.5.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc1498
|
|
P4/mmm |
123 |
tetragonal |
{3,4,10} |
7 |
(3,4) |
G
|
False
|
|
sqc8510
|
|
I41/a |
88 |
tetragonal |
{4,3,12,4} |
16 |
(4,5) |
D
|
False
|
|
sqc8609
|
|
I41/amd |
141 |
tetragonal |
{4,3,12,4} |
16 |
(4,4) |
Topological data
Vertex degrees | {4,3,12,4} |
2D vertex symbol | {5.5.5.5}{5.4.5}{5.4.4.5.4.4.5.4.4.5.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<84.1:144:55 3 5 7 9 64 12 14 16 18 73 21 23 25 27 91 30 32 34 36 100 39 41 43 45 82 48 50 52 54 57 59 61 63 66 68 70 72 75 77 79 81 84 86 88 90 93 95 97 99 102 104 106 108 136 111 113 115 117 127 120 122 124 126 129 131 133 135 138 140 142 144,2 4 59 60 8 63 11 13 68 69 17 72 20 22 77 78 26 81 29 31 95 96 35 99 38 40 104 105 44 108 47 49 86 87 53 90 56 58 62 65 67 71 74 76 80 83 85 89 92 94 98 101 103 107 110 112 140 141 116 144 119 121 131 132 125 135 128 130 134 137 139 143,10 56 57 6 7 26 27 65 66 15 16 35 36 37 74 75 24 25 46 92 93 33 34 101 102 42 43 125 126 83 84 51 52 143 144 64 60 61 89 90 69 70 107 108 100 78 79 116 117 91 87 88 96 97 134 135 105 106 127 137 138 114 115 136 128 129 123 124 132 133 141 142:5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4,4 3 12 4 3 12 4 4 3 4 3 3 3 4 3 3> {(1, 122): 't3^-1*tau2^-1*t1*tau3*t2^-1', (1, 125): 't3^-1*tau2^-1*t1*tau3*t2^-1', (1, 113): 't3*tau2*t1^-1*tau3^-1*t2', (2, 55): 't1', (1, 116): 't3*tau2*t1^-1*tau3^-1*t2', (2, 45): 't2^-1', (1, 107): 'tau2*t3', (2, 47): 't2^-1*tau3', (2, 36): 't3^-1', (2, 37): 't3^-1*tau2^-1', (2, 38): 't3^-1*tau2^-1', (1, 98): 't2*tau3^-1', (2, 19): 'tau2^-1*t3^-1', (2, 28): 'tau3*t2^-1', (2, 29): 'tau3*t2^-1', (2, 20): 'tau2^-1*t3^-1', (1, 80): 't3*tau2', (1, 86): 'tau3^-1*t2', (2, 136): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 137): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 46): 't2^-1*tau3', (2, 11): 't1^-1', (2, 135): 'tau1', (2, 128): 't2*tau3^-1*t1^-1*tau2*t3', (1, 68): 't1', (2, 2): 't1^-1', (1, 89): 'tau3^-1*t2', (2, 126): 'tau1^-1', (2, 127): 't2*tau3^-1*t1^-1*tau2*t3', (1, 59): 't1', (2, 10): 't1^-1', (1, 62): 't1', (1, 41): 't3^-1*tau2^-1', (1, 32): 'tau3*t2^-1', (2, 99): 't3^-1', (2, 81): 't2^-1', (1, 23): 'tau2^-1*t3^-1', (1, 71): 't1'}