U-tiling: UQC4355
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1228 |
*2244 |
(4,4,2) |
{4,4,8,4} |
{5.5.5.5}{5.4.4.5}{5.4.5.4.5.4.5... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc2736
|
|
P4/mmm |
123 |
tetragonal |
{4,4,4,8} |
8 |
(4,4) |
G
|
False
|
|
sqc8769
|
|
I41/a |
88 |
tetragonal |
{4,4,8,4} |
16 |
(4,5) |
D
|
False
|
|
sqc8617
|
|
I41/amd |
141 |
tetragonal |
{4,4,8,4} |
16 |
(4,4) |
Topological data
Vertex degrees | {4,4,8,4} |
2D vertex symbol | {5.5.5.5}{5.4.4.5}{5.4.5.4.5.4.5.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<90.1:144:55 3 5 7 9 64 12 14 16 18 73 21 23 25 27 91 30 32 34 36 100 39 41 43 45 82 48 50 52 54 57 59 61 63 66 68 70 72 75 77 79 81 84 86 88 90 93 95 97 99 102 104 106 108 136 111 113 115 117 127 120 122 124 126 129 131 133 135 138 140 142 144,2 4 59 8 25 27 11 13 68 17 34 36 20 22 77 26 29 31 95 35 38 40 104 44 124 126 47 49 86 53 142 144 56 58 62 88 90 65 67 71 106 108 74 76 80 115 117 83 85 89 92 94 98 133 135 101 103 107 110 112 140 116 119 121 131 125 128 130 134 137 139 143,10 56 57 6 7 62 63 65 66 15 16 71 72 37 74 75 24 25 80 81 46 92 93 33 34 98 99 101 102 42 43 107 108 83 84 51 52 89 90 64 60 61 69 70 100 78 79 91 87 88 96 97 105 106 127 137 138 114 115 143 144 136 128 129 123 124 134 135 132 133 141 142:5 4 5 4 5 5 5 4 5 4 4 4 4 4 5 5,4 4 8 4 4 8 4 4 4 4 4 4 4 4 4 4> {(2, 61): 't1', (2, 62): 't1', (2, 56): 't1', (2, 52): 't2^-1*tau3', (2, 53): 't2^-1*tau3', (2, 55): 't1', (2, 44): 't3^-1*tau2^-1', (2, 45): 't2^-1', (2, 46): 't2^-1*tau3', (2, 47): 't2^-1*tau3', (2, 43): 't3^-1*tau2^-1', (2, 36): 't3^-1', (2, 37): 't3^-1*tau2^-1', (2, 38): 't3^-1*tau2^-1', (2, 34): 'tau3*t2^-1', (2, 35): 'tau3*t2^-1', (2, 28): 'tau3*t2^-1', (2, 29): 'tau3*t2^-1', (2, 25): 'tau2^-1*t3^-1', (2, 26): 'tau2^-1*t3^-1', (2, 20): 'tau2^-1*t3^-1', (2, 16): 't1^-1', (2, 17): 't1^-1', (2, 19): 'tau2^-1*t3^-1', (2, 142): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 143): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 136): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 137): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 10): 't1^-1', (2, 11): 't1^-1', (2, 133): 't2*tau3^-1*t1^-1*tau2*t3', (2, 134): 't2*tau3^-1*t1^-1*tau2*t3', (2, 128): 't2*tau3^-1*t1^-1*tau2*t3', (2, 126): 'tau1^-1', (2, 127): 't2*tau3^-1*t1^-1*tau2*t3', (2, 117): 'tau1^-1', (2, 99): 't3^-1', (2, 90): 't2'}