U-tiling: UQC4379
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1234 |
*2224 |
(4,4,2) |
{4,3,3,4} |
{7.7.7.7}{7.4.7}{7.7.4}{7.7.7.7} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc9225
|
|
I4/mmm |
139 |
tetragonal |
{3,3,4,4} |
22 |
(4,4) |
G
|
False
|
|
sqc12856
|
|
I41/acd |
142 |
tetragonal |
{4,3,3,4} |
44 |
(4,5) |
D
|
False
|
|
sqc9242
|
|
P42/nnm |
134 |
tetragonal |
{3,3,4,4} |
22 |
(4,4) |
Topological data
Vertex degrees | {4,3,3,4} |
2D vertex symbol | {7.7.7.7}{7.4.7}{7.7.4}{7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<99.2:288:37 3 5 7 9 46 12 14 16 18 55 21 23 25 27 73 30 32 34 36 39 41 43 45 48 50 52 54 57 59 61 63 208 66 68 70 72 75 77 79 81 244 84 86 88 90 262 93 95 97 99 145 102 104 106 108 280 111 113 115 117 172 120 122 124 126 190 129 131 133 135 199 138 140 142 144 147 149 151 153 226 156 158 160 162 235 165 167 169 171 174 176 178 180 253 183 185 187 189 192 194 196 198 201 203 205 207 210 212 214 216 271 219 221 223 225 228 230 232 234 237 239 241 243 246 248 250 252 255 257 259 261 264 266 268 270 273 275 277 279 282 284 286 288,2 4 8 15 106 45 11 13 17 124 54 20 22 26 33 133 63 29 31 35 160 81 38 40 44 69 142 47 49 53 87 169 56 58 62 96 187 65 67 71 178 216 74 76 80 114 223 83 85 89 151 252 92 94 98 232 270 101 103 107 123 153 110 112 116 196 288 119 121 125 180 128 130 134 159 198 137 139 143 177 207 146 148 152 168 155 157 161 234 164 166 170 243 173 175 179 182 184 188 231 261 191 193 197 222 200 202 206 240 250 209 211 215 249 241 218 220 224 279 227 229 233 236 238 242 245 247 251 254 256 260 276 286 263 265 269 285 277 272 274 278 281 283 287,19 11 12 6 7 107 108 28 15 16 125 126 29 30 24 25 134 135 33 34 161 162 55 65 66 42 43 143 144 73 83 84 51 52 170 171 92 93 60 61 188 189 91 69 70 179 180 110 111 78 79 224 225 109 87 88 152 153 96 97 233 234 127 119 120 105 106 114 115 197 198 154 123 124 155 156 132 133 181 173 174 141 142 190 164 165 150 151 159 160 217 168 169 226 177 178 227 228 186 187 218 219 195 196 253 236 237 204 205 251 252 262 245 246 213 214 242 243 222 223 231 232 271 240 241 280 249 250 272 273 258 259 287 288 281 282 267 268 278 279 276 277 285 286:7 4 7 7 4 7 4 4 4 7 4 7 7 7 7 7 7 7 7 7 7 4 7 4,4 3 3 4 3 4 3 3 4 3 4 4 3 3 4 3 3 3 3 3 3 3 3 3 4 3 3 3 4 3 4 3 3 3 4 3 3 4 3 3 3 3 3 3> {(2, 188): 'tau2', (2, 187): 'tau2', (2, 180): 't3^-1', (1, 114): 'tau3', (1, 116): 't2', (2, 172): 't3^-1', (2, 173): 't3^-1', (2, 46): 't2', (2, 47): 't2', (1, 239): 'tau1^-1', (2, 37): 't3', (2, 164): 't2', (1, 96): 'tau2^-1', (2, 38): 't3', (2, 160): 't1', (2, 161): 't1', (2, 162): 't2', (2, 163): 't2', (2, 286): 't2^-1*tau3*t1*tau2^-1', (2, 287): 't2^-1*tau3*t1*tau2^-1', (2, 280): 'tau1*t3^-1', (2, 281): 'tau1*t3^-1', (2, 277): 't2*tau3^-1*t1^-1*tau2', (2, 278): 't2*tau3^-1*t1^-1*tau2', (1, 212): 'tau1^-1', (1, 86): 't2^-1', (1, 78): 'tau3', (2, 133): 't1', (2, 134): 't1', (1, 68): 't3^-1', (2, 252): 't3^-1', (2, 253): 't3^-1*tau1', (2, 254): 't3^-1*tau1', (1, 60): 'tau2^-1', (2, 244): 'tau1', (2, 245): 'tau1', (1, 176): 't3^-1', (2, 108): 't2', (2, 232): 'tau2', (2, 233): 'tau2', (0, 108): 't2', (2, 235): 'tau1^-1', (1, 33): 't1^-1', (2, 224): 'tau3^-1', (1, 167): 't2', (1, 24): 't1^-1', (0, 216): 't2^-1', (2, 223): 'tau3^-1', (1, 285): 't2^-1*tau3*t1*tau2^-1', (1, 284): 'tau1*t3^-1', (2, 90): 't3', (1, 275): 'tau1^-1*t3', (1, 276): 't2*tau3^-1*t1^-1*tau2', (1, 278): 't2', (2, 207): 't3^-1', (2, 200): 'tau1', (2, 196): 'tau3^-1', (2, 197): 'tau3^-1'}