U-tiling: UQC4412
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1256 |
*2244 |
(4,4,2) |
{8,3,4,4} |
{5.4.4.5.5.4.4.5}{5.5.4}{4.4.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc8343
|
|
P42/mmc |
131 |
tetragonal |
{7,3,4,4} |
16 |
(4,4) |
G
|
False
|
|
sqc8652
|
|
I-42d |
122 |
tetragonal |
{8,3,4,4} |
16 |
(4,5) |
D
|
False
|
|
sqc2429
|
|
P-42m |
111 |
tetragonal |
{8,4,3,4} |
8 |
(4,4) |
Topological data
Vertex degrees | {8,3,4,4} |
2D vertex symbol | {5.4.4.5.5.4.4.5}{5.5.4}{4.4.4.4}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<97.1:144:55 3 5 7 9 64 12 14 16 18 28 21 23 25 27 30 32 34 36 46 39 41 43 45 48 50 52 54 57 59 61 63 66 68 70 72 127 75 77 79 81 136 84 86 88 90 100 93 95 97 99 102 104 106 108 118 111 113 115 117 120 122 124 126 129 131 133 135 138 140 142 144,2 8 6 23 25 63 11 17 15 32 34 72 20 26 24 36 29 35 33 38 44 42 59 61 54 47 53 51 68 70 56 62 60 65 71 69 74 80 78 95 97 135 83 89 87 104 106 144 92 98 96 108 101 107 105 110 116 114 131 133 126 119 125 123 140 142 128 134 132 137 143 141,73 4 5 15 16 26 27 82 13 14 35 36 91 22 23 42 43 100 31 32 51 52 109 40 41 62 63 118 49 50 71 72 127 58 59 69 70 136 67 68 76 77 87 88 98 99 85 86 107 108 94 95 114 115 103 104 123 124 112 113 134 135 121 122 143 144 130 131 141 142 139 140:5 4 5 4 5 5 4 4 5 4 5 4 5 5 4 4,8 3 4 4 3 8 8 3 3 8 3 4 4 3 3 3> {(1, 121): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (2, 61): 't3^-1', (1, 123): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (0, 63): 't3^-1*tau2^-1*t1', (2, 52): 't3*tau2*t3', (2, 53): 't3*tau2*t3', (1, 114): 'tau1', (2, 62): 't3^-1', (2, 50): 't3*tau2*t1^-1', (2, 51): 't3*tau2*t1^-1', (1, 96): 't2^-1', (2, 34): 't1', (2, 35): 't1', (1, 89): 't1^-1*tau2*t3', (1, 94): 't2^-1', (1, 85): 'tau3', (1, 87): 'tau3', (2, 142): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 143): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (1, 112): 'tau1', (2, 133): 'tau1^-1', (2, 134): 'tau1^-1', (1, 69): 't3^-1*tau2^-1*t3^-1', (0, 135): 't3^-1*tau2^-1*t1', (1, 71): 't3^-1*tau2^-1*t1', (1, 58): 't3^-1', (1, 60): 't3^-1', (2, 122): 't3*tau2*t1^-1', (2, 123): 't3*tau2*t1^-1', (1, 49): 't3*tau2*t3', (2, 106): 'tau3^-1', (2, 107): 'tau3^-1', (2, 97): 't2^-1', (2, 98): 't2^-1', (1, 13): 't1^-1', (1, 15): 't1^-1'}