U-tiling: UQC4450
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1451 |
*2224 |
(4,5,2) |
{3,4,4,4} |
{7.3.7}{7.7.3.3}{7.7.7.7}{7.7.7.7} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc9817
|
|
I4/mmm |
139 |
tetragonal |
{3,4,4,4} |
22 |
(4,5) |
G
|
False
|
|
sqc12995
|
|
I41/acd |
142 |
tetragonal |
{3,4,4,4} |
44 |
(4,6) |
D
|
False
|
|
sqc9890
|
|
P42/nnm |
134 |
tetragonal |
{4,4,4,3} |
22 |
(4,5) |
Topological data
Vertex degrees | {3,4,4,4} |
2D vertex symbol | {7.3.7}{7.7.3.3}{7.7.7.7}{7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<102.2:320:41 3 5 26 8 10 51 13 15 36 18 20 61 23 25 28 30 81 33 35 38 40 43 45 66 48 50 53 55 86 58 60 63 65 68 70 231 73 75 106 78 80 83 85 88 90 271 93 95 126 98 100 291 103 105 108 110 161 113 115 146 118 120 311 123 125 128 130 191 133 135 176 138 140 211 143 145 148 150 221 153 155 206 158 160 163 165 216 168 170 251 173 175 178 180 261 183 185 246 188 190 193 195 256 198 200 281 203 205 208 210 213 215 218 220 223 225 286 228 230 233 235 296 238 240 301 243 245 248 250 253 255 258 260 263 265 306 268 270 273 275 316 278 280 283 285 288 290 293 295 298 300 303 305 308 310 313 315 318 320,2 7 24 6 9 50 12 17 34 16 19 60 22 27 26 29 70 32 37 36 39 90 42 47 64 46 49 52 57 84 56 59 62 67 66 69 72 77 104 76 79 240 82 87 86 89 92 97 124 96 99 280 102 107 106 109 300 112 117 144 116 119 170 122 127 126 129 320 132 137 174 136 139 200 142 147 146 149 220 152 157 204 156 159 230 162 167 214 166 169 172 177 176 179 260 182 187 244 186 189 270 192 197 254 196 199 202 207 206 209 290 212 217 216 219 222 227 284 226 229 232 237 294 236 239 242 247 246 249 310 252 257 256 259 262 267 304 266 269 272 277 314 276 279 282 287 286 289 292 297 296 299 302 307 306 309 312 317 316 319,21 4 5 16 17 18 119 120 31 14 15 139 140 24 25 36 37 38 149 150 34 35 179 180 61 44 45 76 77 78 159 160 81 54 55 96 97 98 189 190 64 65 106 107 108 209 210 101 74 75 199 200 84 85 126 127 128 249 250 121 94 95 169 170 104 105 259 260 141 114 115 136 137 138 124 125 219 220 171 134 135 144 145 176 177 178 201 154 155 196 197 198 211 164 165 186 187 188 174 175 241 184 185 251 194 195 204 205 256 257 258 214 215 246 247 248 281 224 225 266 267 268 279 280 291 234 235 276 277 278 269 270 244 245 254 255 301 264 265 311 274 275 284 285 306 307 308 319 320 294 295 316 317 318 309 310 304 305 314 315:7 3 7 3 7 7 3 3 7 3 7 3 7 7 3 7 7 3 7 7 3 3 7 7 3 3 7 3 3 7 3 3,3 4 4 4 3 4 4 4 4 4 3 4 4 3 4 4 4 4 3 4 4 3 3 4 3 4 3 4 3 4 3 3 4 4 3 4 4 3 4 3 3 4 4 4> {(1, 249): 't2^-1', (2, 316): 'tau1*t3^-1', (1, 123): 't2', (0, 185): 't2', (2, 56): 't2', (2, 185): 't2', (2, 186): 't2', (2, 187): 't2', (2, 180): 't2', (2, 309): 't2*tau3^-1*t1^-1*tau2', (1, 243): 't2^-1', (2, 55): 't2', (2, 318): 't2^-1*tau3*t1*tau2^-1', (2, 178): 't1', (2, 179): 't1', (1, 233): 't3^-1', (2, 45): 't3', (2, 46): 't3', (2, 47): 't3', (2, 120): 't2', (1, 103): 't3', (2, 57): 't2', (2, 156): 't3', (2, 157): 't3', (1, 223): 't3', (2, 155): 't3', (2, 148): 't1', (2, 149): 't1', (2, 150): 't3', (2, 315): 'tau1*t3^-1', (2, 308): 't2*tau3^-1*t1^-1*tau2', (1, 203): 't3^-1', (2, 128): 'tau3', (2, 129): 'tau3', (2, 317): 'tau1*t3^-1', (0, 120): 't2', (2, 248): 'tau3^-1', (2, 249): 'tau3^-1', (0, 125): 't2', (0, 240): 't2^-1', (2, 305): 'tau1^-1*t3', (2, 236): 'tau1^-1', (2, 237): 'tau1^-1', (0, 105): 't3', (2, 306): 'tau1^-1*t3', (2, 235): 'tau1^-1', (2, 100): 't3', (2, 230): 't3^-1', (0, 225): 't3', (2, 225): 'tau1', (2, 226): 'tau1', (2, 227): 'tau1', (2, 220): 't3', (2, 108): 'tau2^-1', (2, 307): 'tau1^-1*t3', (2, 109): 'tau2^-1', (2, 208): 'tau2', (2, 209): 'tau2', (0, 205): 't3^-1', (1, 129): 't2', (0, 235): 't3^-1', (2, 319): 't2^-1*tau3*t1*tau2^-1'}