U-tiling: UQC4453
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1452 |
*2244 |
(4,5,2) |
{3,4,8,4} |
{7.3.7}{7.7.3.3}{7.7.7.7.7.7.7.7... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc2243
|
|
P4/mmm |
123 |
tetragonal |
{4,3,6} |
9 |
(3,5) |
G
|
False
|
|
sqc9417
|
|
I41/a |
88 |
tetragonal |
{3,4,8,4} |
20 |
(4,6) |
D
|
False
|
|
sqc9443
|
|
I41/amd |
141 |
tetragonal |
{3,4,8,4} |
20 |
(4,5) |
Topological data
Vertex degrees | {3,4,8,4} |
2D vertex symbol | {7.3.7}{7.7.3.3}{7.7.7.7.7.7.7.7}{7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<100.1:160:61 3 5 16 8 10 71 13 15 18 20 81 23 25 46 28 30 101 33 35 56 38 40 111 43 45 48 50 91 53 55 58 60 63 65 76 68 70 73 75 78 80 83 85 116 88 90 93 95 106 98 100 103 105 108 110 113 115 118 120 151 123 125 146 128 130 141 133 135 156 138 140 143 145 148 150 153 155 158 160,2 7 14 6 9 70 12 17 16 19 80 22 27 44 26 29 90 32 37 54 36 39 110 42 47 46 49 120 52 57 56 59 100 62 67 74 66 69 72 77 76 79 82 87 114 86 89 92 97 104 96 99 102 107 106 109 112 117 116 119 122 127 144 126 129 160 132 137 154 136 139 150 142 147 146 149 152 157 156 159,11 4 5 66 67 68 29 30 14 15 76 77 78 39 40 41 24 25 86 87 88 51 34 35 106 107 108 44 45 116 117 118 139 140 54 55 96 97 98 159 160 71 64 65 99 100 74 75 119 120 111 84 85 129 130 101 94 95 104 105 149 150 114 115 141 124 125 156 157 158 151 134 135 146 147 148 144 145 154 155:7 3 7 7 3 7 3 7 7 3 3 3 7 3 7 3,3 4 8 4 4 8 4 3 4 3 4 4 4 3 3 3 3 4 3 4> {(1, 123): 'tau1', (2, 56): 't2^-1*tau3', (2, 57): 't2^-1*tau3', (1, 113): 't3^-1', (2, 55): 't2^-1*tau3', (0, 55): 't2^-1', (2, 50): 't2^-1', (2, 45): 't3^-1*tau2^-1', (2, 46): 't3^-1*tau2^-1', (2, 47): 't3^-1*tau2^-1', (2, 40): 't3^-1', (2, 36): 'tau3*t2^-1', (2, 37): 'tau3*t2^-1', (1, 103): 't2', (2, 35): 'tau3*t2^-1', (2, 156): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 155): 'tau1', (0, 25): 't3', (2, 25): 'tau2^-1*t3^-1', (2, 26): 'tau2^-1*t3^-1', (2, 27): 'tau2^-1*t3^-1', (2, 150): 'tau1', (2, 16): 't1^-1', (2, 17): 't1^-1', (2, 146): 't2*tau3^-1*t1^-1*tau2*t3', (2, 147): 't2*tau3^-1*t1^-1*tau2*t3', (2, 140): 'tau1^-1', (2, 15): 't1^-1', (2, 5): 't1^-1', (2, 6): 't1^-1', (2, 135): 't3^-1*tau2^-1*t1*tau3*t2^-1', (2, 127): 't3*tau2*t1^-1*tau3^-1*t2', (0, 125): 'tau1', (0, 115): 't3^-1', (1, 53): 't2^-1', (1, 43): 't3^-1', (0, 105): 't2', (1, 153): 'tau1', (2, 7): 't1^-1', (2, 90): 't2^-1', (2, 155): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 80): 't3'}