U-tiling: UQC4467
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1462 |
*2224 |
(4,5,2) |
{4,3,4,4} |
{7.7.7.7}{7.3.7}{7.7.3.3}{7.7.7.7} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc9922
|
|
I4/mmm |
139 |
tetragonal |
{4,3,4,4} |
22 |
(4,5) |
G
|
False
|
|
sqc13018
|
|
I41/acd |
142 |
tetragonal |
{4,3,4,4} |
44 |
(4,6) |
D
|
False
|
|
sqc9926
|
|
P42/nnm |
134 |
tetragonal |
{3,4,4,4} |
22 |
(4,5) |
Topological data
Vertex degrees | {4,3,4,4} |
2D vertex symbol | {7.7.7.7}{7.3.7}{7.7.3.3}{7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<105.2:320:41 3 5 7 18 10 51 13 15 17 20 61 23 25 27 38 30 81 33 35 37 40 43 45 47 78 50 53 55 57 98 60 63 65 67 108 70 231 73 75 77 80 83 85 87 128 90 271 93 95 97 100 291 103 105 107 110 161 113 115 117 138 120 311 123 125 127 130 191 133 135 137 140 211 143 145 147 178 150 221 153 155 157 198 160 163 165 167 188 170 251 173 175 177 180 261 183 185 187 190 193 195 197 200 281 203 205 207 258 210 213 215 217 248 220 223 225 227 268 230 233 235 237 278 240 301 243 245 247 250 253 255 257 260 263 265 267 270 273 275 277 280 283 285 287 308 290 293 295 297 318 300 303 305 307 310 313 315 317 320,2 4 9 16 8 50 12 14 19 18 60 22 24 29 36 28 70 32 34 39 38 90 42 44 49 76 48 52 54 59 96 58 62 64 69 106 68 72 74 79 78 240 82 84 89 126 88 92 94 99 98 280 102 104 109 108 300 112 114 119 136 118 170 122 124 129 128 320 132 134 139 138 200 142 144 149 176 148 220 152 154 159 196 158 230 162 164 169 186 168 172 174 179 178 260 182 184 189 188 270 192 194 199 198 202 204 209 256 208 290 212 214 219 246 218 222 224 229 266 228 232 234 239 276 238 242 244 249 248 310 252 254 259 258 262 264 269 268 272 274 279 278 282 284 289 306 288 292 294 299 316 298 302 304 309 308 312 314 319 318,21 12 13 6 7 118 119 120 31 16 17 138 139 140 32 33 26 27 148 149 150 36 37 178 179 180 61 72 73 46 47 158 159 160 81 92 93 56 57 188 189 190 102 103 66 67 208 209 210 101 76 77 198 199 200 122 123 86 87 248 249 250 121 96 97 168 169 170 106 107 258 259 260 141 132 133 116 117 126 127 218 219 220 171 136 137 172 173 146 147 201 192 193 156 157 211 182 183 166 167 176 177 241 186 187 251 196 197 252 253 206 207 242 243 216 217 281 262 263 226 227 278 279 280 291 272 273 236 237 268 269 270 246 247 256 257 301 266 267 311 276 277 302 303 286 287 318 319 320 312 313 296 297 308 309 310 306 307 316 317:7 3 7 7 3 7 3 3 3 7 3 7 7 7 3 7 7 7 3 7 3 3 7 7 7 3 3 3 3 7 3 3,4 3 4 4 4 4 3 4 4 4 4 4 3 4 4 3 4 3 4 4 3 4 4 4 4 3 4 3 4 3 4 3 3 3 4 3 4 4 3 4 3 4 3 4> {(1, 249): 't2^-1', (0, 187): 't2', (2, 318): 't2^-1*tau3*t1*tau2^-1', (0, 57): 't2', (2, 317): 't2^-1*tau3*t1*tau2^-1', (0, 317): 'tau1*t3^-1', (2, 180): 't2', (2, 181): 't2', (2, 182): 't2', (2, 107): 'tau2^-1', (2, 177): 't1', (2, 178): 't1', (2, 179): 't1', (2, 308): 't2*tau3^-1*t1^-1*tau2', (2, 301): 'tau1^-1*t3', (1, 235): 'tau1^-1', (2, 191): 't3^-1', (0, 47): 't3', (2, 42): 't3', (1, 225): 'tau1', (2, 120): 't2', (2, 312): 'tau1*t3^-1', (2, 152): 't3', (1, 95): 't2^-1', (0, 157): 't3', (2, 148): 't1', (2, 149): 't1', (2, 150): 't3', (2, 272): 'tau1', (2, 147): 't1', (2, 309): 't2*tau3^-1*t1^-1*tau2', (2, 52): 't2', (1, 75): 't3^-1', (0, 307): 'tau1^-1*t3', (1, 195): 't3^-1', (2, 128): 'tau3', (2, 129): 'tau3', (2, 302): 'tau1^-1*t3', (1, 185): 't2', (0, 120): 't2', (2, 311): 'tau1*t3^-1', (2, 248): 'tau3^-1', (2, 249): 'tau3^-1', (1, 305): 'tau1^-1*t3', (0, 240): 't2^-1', (2, 247): 'tau3^-1', (1, 315): 'tau1*t3^-1', (2, 108): 'tau2^-1', (2, 109): 'tau2^-1', (0, 237): 'tau1^-1', (2, 100): 't3', (0, 227): 'tau1', (2, 230): 't3^-1', (2, 231): 'tau1^-1', (2, 51): 't2', (2, 220): 't3', (2, 221): 'tau1', (2, 222): 'tau1', (2, 307): 't2*tau3^-1*t1^-1*tau2', (2, 217): 'tau3^-1', (2, 208): 'tau2', (2, 209): 'tau2', (2, 207): 'tau2', (1, 129): 't2', (2, 319): 't2^-1*tau3*t1*tau2^-1', (2, 41): 't3'}