U-tiling: UQC4477
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc181 |
2*23 |
(2,3,1) |
{4,3} |
{5.5.5.5}{5.5.5} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7350
|
|
I432 |
211 |
cubic |
{4,3} |
16 |
(2,3) |
G
|
False
|
|
sqc12282
|
|
I4132 |
214 |
cubic |
{4,3} |
32 |
(2,4) |
D
|
False
|
|
sqc12281
|
|
Fd-3m |
227 |
cubic |
{4,3} |
32 |
(2,3) |
Topological data
Vertex degrees | {4,4,3,3} |
2D vertex symbol | {5.5.5.5}{5.5.5.5}{5.5.5}{5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<57.1:240:31 3 5 7 28 10 51 13 15 17 68 20 121 23 25 27 30 33 35 37 138 40 181 43 45 47 88 50 53 55 57 168 60 211 63 65 67 70 101 73 75 77 118 80 141 83 85 87 90 161 93 95 97 218 100 103 105 107 208 110 191 113 115 117 120 123 125 127 228 130 221 133 135 137 140 143 145 147 178 150 201 153 155 157 198 160 163 165 167 170 231 173 175 177 180 183 185 187 238 190 193 195 197 200 203 205 207 210 213 215 217 220 223 225 227 230 233 235 237 240,2 9 6 8 27 40 12 19 16 18 67 60 22 29 26 28 130 32 39 36 38 137 42 49 46 48 87 190 52 59 56 58 167 62 69 66 68 220 72 79 76 78 117 110 82 89 86 88 150 92 99 96 98 217 170 102 109 106 108 207 112 119 116 118 200 122 129 126 128 227 132 139 136 138 230 142 149 146 148 177 152 159 156 158 197 210 162 169 166 168 172 179 176 178 240 182 189 186 188 237 192 199 196 198 202 209 206 208 212 219 216 218 222 229 226 228 232 239 236 238,11 4 5 16 17 78 79 80 14 15 158 159 160 41 24 25 46 47 118 119 120 51 34 35 56 57 148 149 150 44 45 208 209 210 54 55 188 189 190 81 64 65 86 87 198 199 200 91 74 75 96 97 84 85 108 109 110 94 95 228 229 230 161 104 105 166 167 171 114 115 176 177 181 124 125 186 187 218 219 220 201 134 135 206 207 178 179 180 211 144 145 216 217 221 154 155 226 227 164 165 238 239 240 174 175 184 185 231 194 195 236 237 204 205 214 215 224 225 234 235:5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5,4 4 3 3 4 3 4 4 3 4 4 3 4 4 4 4 4 3 4 4 3 4 4 4 4 3 4 4 4 4 4 4> {(2, 188): 't3^-1', (2, 189): 't3^-1', (0, 57): 'tau2^-1', (2, 187): 't3^-1', (0, 177): 'tau3', (2, 177): 'tau3*t1', (1, 119): 't2', (2, 179): 'tau3*t1', (0, 170): 't2', (2, 168): 'tau2*t3*tau1^-1', (2, 169): 'tau2*t3*tau1^-1', (1, 239): 't2^-1', (0, 187): 'tau1^-1', (1, 99): 'tau3^-1*t1^-1', (2, 167): 'tau2*t3*tau1^-1', (1, 229): 'tau1^-1*t3*tau2', (2, 156): 'tau1', (2, 155): 'tau1', (2, 148): 't1', (2, 149): 't1', (2, 150): 'tau1', (0, 150): 't3', (2, 147): 't1', (2, 136): 'tau2^-1', (1, 79): 't1^-1', (0, 130): 'tau2^-1*t3^-1*tau1', (2, 135): 'tau2^-1', (2, 128): 't2', (2, 129): 't2', (2, 130): 'tau2^-1', (1, 56): 'tau2^-1', (1, 186): 'tau1^-1', (1, 176): 'tau3', (0, 110): 't2', (2, 178): 'tau3*t1', (2, 228): 't2', (2, 229): 't2', (2, 227): 't2', (0, 90): 'tau3^-1*t1^-1', (2, 95): 'tau3^-1', (2, 217): 't2^-1', (2, 90): 'tau3^-1', (2, 76): 'tau3', (1, 209): 't3^-1', (0, 70): 't1^-1'}