U-tiling: UQC4576
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1488 |
*2224 |
(4,5,2) |
{4,3,3,8} |
{5.5.5.5}{5.5.5}{5.5.5}{5.5.5.5.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc9441
|
|
I4/mmm |
139 |
tetragonal |
{3,4,3,8} |
22 |
(4,5) |
G
|
False
|
|
sqc12946
|
|
I41/acd |
142 |
tetragonal |
{4,3,3,8} |
44 |
(4,6) |
D
|
False
|
|
sqc9422
|
|
P42/nnm |
134 |
tetragonal |
{3,3,8,4} |
22 |
(4,5) |
Topological data
Vertex degrees | {4,3,3,8} |
2D vertex symbol | {5.5.5.5}{5.5.5}{5.5.5}{5.5.5.5.5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<109.2:320:41 3 5 7 9 20 51 13 15 17 19 61 23 25 27 29 40 81 33 35 37 39 43 45 47 49 80 53 55 57 59 100 63 65 67 69 110 231 73 75 77 79 83 85 87 89 130 271 93 95 97 99 291 103 105 107 109 161 113 115 117 119 140 311 123 125 127 129 191 133 135 137 139 211 143 145 147 149 180 221 153 155 157 159 200 163 165 167 169 190 251 173 175 177 179 261 183 185 187 189 193 195 197 199 281 203 205 207 209 260 213 215 217 219 250 223 225 227 229 270 233 235 237 239 280 301 243 245 247 249 253 255 257 259 263 265 267 269 273 275 277 279 283 285 287 289 310 293 295 297 299 320 303 305 307 309 313 315 317 319,2 4 45 16 8 10 12 14 55 18 20 22 24 65 36 28 30 32 34 85 38 40 42 44 76 48 50 52 54 96 58 60 62 64 106 68 70 72 74 235 78 80 82 84 126 88 90 92 94 275 98 100 102 104 295 108 110 112 114 165 136 118 120 122 124 315 128 130 132 134 195 138 140 142 144 215 176 148 150 152 154 225 196 158 160 162 164 186 168 170 172 174 255 178 180 182 184 265 188 190 192 194 198 200 202 204 285 256 208 210 212 214 246 218 220 222 224 266 228 230 232 234 276 238 240 242 244 305 248 250 252 254 258 260 262 264 268 270 272 274 278 280 282 284 306 288 290 292 294 316 298 300 302 304 308 310 312 314 318 320,21 12 13 6 7 48 49 120 31 16 17 58 59 140 32 33 26 27 68 69 150 36 37 88 89 180 61 72 73 46 47 160 81 92 93 56 57 190 102 103 66 67 210 101 76 77 238 239 200 122 123 86 87 250 121 96 97 278 279 170 106 107 298 299 260 141 132 133 116 117 168 169 126 127 318 319 220 171 136 137 198 199 172 173 146 147 218 219 201 192 193 156 157 228 229 211 182 183 166 167 176 177 258 259 241 186 187 268 269 251 196 197 252 253 206 207 288 289 242 243 216 217 281 262 263 226 227 280 291 272 273 236 237 270 246 247 308 309 256 257 301 266 267 311 276 277 302 303 286 287 320 312 313 296 297 310 306 307 316 317:5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5,4 3 3 8 3 8 3 3 8 3 8 4 3 4 3 3 3 3 3 3 4 3 3 3 3 3 3 4 3 3 4 3 3 3 3 3 3 4 3 4 3 3 3 3> {(0, 59): 't2', (2, 191): 't3^-1', (2, 312): 'tau1*t3^-1', (1, 124): 't2', (0, 189): 't2', (2, 180): 't2', (2, 181): 't2', (2, 182): 't2', (0, 49): 't3', (1, 244): 't2^-1', (2, 179): 't1', (2, 301): 'tau1^-1*t3', (1, 235): 'tau1^-1', (2, 319): 't2^-1*tau3*t1*tau2^-1', (2, 41): 't3', (2, 42): 't3', (1, 225): 'tau1', (2, 120): 't2', (0, 319): 'tau1*t3^-1', (2, 152): 't3', (0, 159): 't3', (1, 95): 't2^-1', (2, 149): 't1', (2, 150): 't3', (2, 272): 'tau1', (2, 52): 't2', (1, 75): 't3^-1', (2, 309): 't2*tau3^-1*t1^-1*tau2', (0, 309): 'tau1^-1*t3', (1, 195): 't3^-1', (2, 128): 't2', (2, 129): 'tau3', (2, 302): 'tau1^-1*t3', (1, 185): 't2', (0, 120): 't2', (2, 127): 't2', (2, 248): 't2^-1', (2, 249): 'tau3^-1', (1, 305): 'tau1^-1*t3', (0, 240): 't2^-1', (2, 247): 't2^-1', (1, 315): 'tau1*t3^-1', (2, 109): 'tau2^-1', (0, 239): 'tau1^-1', (2, 100): 't3', (2, 230): 't3^-1', (2, 231): 'tau1^-1', (2, 51): 't2', (0, 229): 'tau1', (2, 220): 't3', (2, 221): 'tau1', (2, 222): 'tau1', (2, 311): 'tau1*t3^-1', (2, 209): 'tau2'}