U-tiling: UQC4602
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1490 |
*22222 |
(4,5,2) |
{4,3,3,4} |
{5.5.5.5}{5.10.5}{5.10.10}{10.10... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9300
|
|
P4/mmm |
123 |
tetragonal |
{4,3,3,3} |
24 |
(4,5) |
G
|
False
|
|
sqc9634
|
|
I4122 |
98 |
tetragonal |
{4,3,3,4} |
24 |
(4,6) |
D
|
False
|
|
sqc3282
|
|
P4222 |
93 |
tetragonal |
{3,4,3,4} |
12 |
(4,5) |
Topological data
Vertex degrees | {4,3,3,4} |
2D vertex symbol | {5.5.5.5}{5.10.5}{5.10.10}{10.10.10.10} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<57.3:160:91 3 5 7 9 30 71 13 15 17 19 40 111 23 25 27 29 101 33 35 37 39 131 43 45 47 49 70 121 53 55 57 59 90 151 63 65 67 69 73 75 77 79 110 141 83 85 87 89 93 95 97 99 120 103 105 107 109 113 115 117 119 123 125 127 129 150 133 135 137 139 160 143 145 147 149 153 155 157 159,2 4 95 16 8 10 12 14 75 18 20 22 24 115 36 28 30 32 34 105 38 40 42 44 135 76 48 50 52 54 125 96 58 60 62 64 155 106 68 70 72 74 78 80 82 84 145 116 88 90 92 94 98 100 102 104 108 110 112 114 118 120 122 124 136 128 130 132 134 138 140 142 144 156 148 150 152 154 158 160,21 12 13 6 7 98 99 50 31 16 17 78 79 60 32 33 26 27 118 119 70 36 37 108 109 90 61 72 73 46 47 138 139 81 92 93 56 57 128 129 102 103 66 67 158 159 101 76 77 130 112 113 86 87 148 149 111 96 97 140 106 107 150 116 117 160 141 132 133 126 127 151 136 137 152 153 146 147 156 157:5 10 5 5 5 5 10 5 10 5 5 10,4 3 3 4 3 4 3 3 4 3 4 4 3 3 4 3 3 3 3 3 3 4 3 3> {(2, 60): 'tau2^-1*t3^-1', (2, 61): 'tau2^-1', (2, 62): 'tau2^-1', (1, 125): 'tau1^-1', (2, 52): 't2', (1, 115): 'tau3^-1', (1, 114): 't1', (2, 50): 't2*tau3^-1', (2, 51): 't2', (1, 105): 'tau2', (2, 41): 't3', (2, 42): 't3', (2, 39): 't1', (2, 32): 't1', (0, 39): 't1', (2, 28): 't1^-1', (2, 159): 't1^-1', (2, 152): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 159): 't1^-1*tau3^-1*t2', (1, 95): 't2^-1', (2, 27): 't1^-1', (2, 20): 't1^-1', (2, 151): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (1, 84): 't1^-1', (0, 20): 't1^-1', (2, 147): 't1', (2, 140): 't1*tau3*t2^-1', (1, 75): 't3^-1', (0, 140): 't1', (2, 130): 't3*tau2', (2, 131): 'tau1', (2, 122): 'tau1^-1', (2, 112): 'tau3^-1', (2, 31): 't1', (0, 109): 'tau2*t3', (0, 99): 't2^-1*tau3', (1, 35): 't1', (1, 155): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 88): 't1^-1', (2, 111): 'tau3^-1', (0, 149): 'tau2*t3'}