U-tiling: UQC4679
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1523 |
*2244 |
(4,4,2) |
{3,6,8,8} |
{4.4.4}{4.4.4.4.4.4}{4.4.4.4.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc2593
|
|
P4/mmm |
123 |
tetragonal |
{3,6,6,6} |
8 |
(4,4) |
G
|
False
|
|
sqc9500
|
|
I41/a |
88 |
tetragonal |
{3,6,8,8} |
16 |
(4,5) |
D
|
False
|
|
sqc9501
|
|
I41/amd |
141 |
tetragonal |
{3,6,8,8} |
16 |
(4,4) |
Topological data
Vertex degrees | {3,6,8,8} |
2D vertex symbol | {4.4.4}{4.4.4.4.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<10.1:160:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160,61 12 5 10 7 9 71 15 20 17 19 81 42 25 30 27 29 101 52 35 40 37 39 111 45 50 47 49 91 55 60 57 59 72 65 70 67 69 75 80 77 79 112 85 90 87 89 102 95 100 97 99 105 110 107 109 115 120 117 119 151 142 125 130 127 129 141 152 135 140 137 139 145 150 147 149 155 160 157 159,3 4 65 66 27 28 69 70 13 14 75 76 37 38 79 80 23 24 85 86 89 90 33 34 105 106 109 110 43 44 115 116 137 138 119 120 53 54 95 96 157 158 99 100 63 64 97 98 73 74 117 118 83 84 127 128 93 94 103 104 147 148 113 114 123 124 155 156 159 160 133 134 145 146 149 150 143 144 153 154:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,3 6 8 8 3 8 8 3 6 3 6 3 3 3 6 3> {(1, 121): 'tau1', (2, 58): 't2^-1*tau3', (2, 59): 't2^-1*tau3', (2, 48): 't3^-1*tau2^-1', (2, 49): 't3^-1*tau2^-1', (1, 111): 't3^-1', (2, 38): 'tau3*t2^-1', (2, 39): 'tau3*t2^-1', (1, 101): 't2', (2, 28): 'tau2^-1*t3^-1', (2, 29): 'tau2^-1*t3^-1', (2, 159): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 149): 't2*tau3^-1*t1^-1*tau2*t3', (2, 18): 't1^-1', (2, 19): 't1^-1', (2, 8): 't1^-1', (2, 9): 't1^-1', (2, 138): 't3^-1*tau2^-1*t1*tau3*t2^-1', (2, 128): 't3*tau2*t1^-1*tau3^-1*t2', (1, 51): 't2^-1', (1, 41): 't3^-1', (1, 151): 'tau1'}