U-tiling: UQC4682
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1526 |
*2224 |
(4,4,2) |
{3,12,4,4} |
{4.4.4}{4.4.4.4.4.4.4.4.4.4.4.4}... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc3370
|
|
P4/mmm |
123 |
tetragonal |
{3,4,4,12} |
9 |
(4,4) |
G
|
False
|
|
sqc12966
|
|
I41/acd |
142 |
tetragonal |
{3,12,4,4} |
36 |
(4,5) |
D
|
False
|
|
sqc9685
|
|
P42/nnm |
134 |
tetragonal |
{4,4,3,12} |
18 |
(4,4) |
Topological data
Vertex degrees | {3,12,4,4} |
2D vertex symbol | {4.4.4}{4.4.4.4.4.4.4.4.4.4.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<19.1:320:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 320,21 42 5 10 7 9 31 52 15 20 17 19 62 25 30 27 29 82 35 40 37 39 61 45 50 47 49 81 55 60 57 59 65 70 67 69 101 232 75 80 77 79 85 90 87 89 121 272 95 100 97 99 292 105 110 107 109 141 162 115 120 117 119 312 125 130 127 129 171 192 135 140 137 139 212 145 150 147 149 201 222 155 160 157 159 211 165 170 167 169 252 175 180 177 179 241 262 185 190 187 189 251 195 200 197 199 282 205 210 207 209 215 220 217 219 281 225 230 227 229 291 235 240 237 239 302 245 250 247 249 255 260 257 259 301 265 270 267 269 311 275 280 277 279 285 290 287 289 295 300 297 299 305 310 307 309 315 320 317 319,3 4 25 26 17 18 119 120 13 14 35 36 139 140 23 24 37 38 149 150 33 34 179 180 43 44 65 66 77 78 159 160 53 54 85 86 97 98 189 190 63 64 107 108 209 210 73 74 105 106 199 200 83 84 127 128 249 250 93 94 125 126 169 170 103 104 259 260 113 114 145 146 137 138 123 124 219 220 133 134 175 176 143 144 177 178 153 154 205 206 197 198 163 164 215 216 187 188 173 174 183 184 245 246 193 194 255 256 203 204 257 258 213 214 247 248 223 224 285 286 267 268 279 280 233 234 295 296 277 278 269 270 243 244 253 254 263 264 305 306 273 274 315 316 283 284 307 308 319 320 293 294 317 318 309 310 303 304 313 314:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,3 12 4 4 3 12 12 4 12 3 4 4 3 4 4 4 3 4 3 3 4 3 3 4 3 4 3 3 3 4 4 3 4 3 3 4> {(1, 121): 't2', (1, 120): 't2', (2, 318): 't2^-1*tau3*t1*tau2^-1', (2, 319): 't2^-1*tau3*t1*tau2^-1', (2, 184): 't2', (2, 185): 't2', (2, 186): 't2', (2, 187): 't2', (1, 241): 't2^-1', (1, 240): 't2^-1', (2, 178): 't1', (2, 179): 't1', (2, 46): 't3', (2, 47): 't3', (2, 56): 't2', (1, 100): 't3', (2, 57): 't2', (2, 156): 't3', (2, 157): 't3', (2, 316): 'tau1*t3^-1', (1, 220): 't3', (2, 154): 't3', (2, 155): 't3', (2, 148): 't1', (2, 149): 't1', (1, 200): 't3^-1', (2, 309): 't2*tau3^-1*t1^-1*tau2', (1, 230): 't3^-1', (2, 128): 'tau3', (2, 129): 'tau3', (2, 124): 't2', (2, 125): 't2', (2, 248): 'tau3^-1', (2, 249): 'tau3^-1', (2, 306): 'tau1^-1*t3', (2, 236): 'tau1^-1', (2, 237): 'tau1^-1', (2, 104): 't3', (2, 105): 't3', (2, 234): 't3^-1', (2, 235): 't3^-1', (2, 317): 'tau1*t3^-1', (2, 307): 'tau1^-1*t3', (2, 224): 't3', (2, 225): 't3', (2, 226): 'tau1', (2, 227): 'tau1', (2, 108): 'tau2^-1', (2, 109): 'tau2^-1', (2, 208): 'tau2', (2, 209): 'tau2', (2, 308): 't2*tau3^-1*t1^-1*tau2'}