U-tiling: UQC4853
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1777 |
*22222 |
(4,6,2) |
{4,4,3,4} |
{5.5.5.5}{5.6.6.5}{5.6.6}{6.6.6.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10672
|
|
P4/mmm |
123 |
tetragonal |
{4,4,3,4} |
24 |
(4,6) |
G
|
False
|
|
sqc10670
|
|
I4122 |
98 |
tetragonal |
{4,4,3,4} |
24 |
(4,7) |
D
|
False
|
|
sqc4482
|
|
P4222 |
93 |
tetragonal |
{4,4,3,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {4,4,3,4} |
2D vertex symbol | {5.5.5.5}{5.6.6.5}{5.6.6}{6.6.6.6} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<64.5:176:12 3 5 7 107 10 110 14 16 18 85 21 88 34 25 27 29 129 32 132 36 38 40 118 43 121 78 47 49 51 151 54 154 100 58 60 62 140 65 143 111 69 71 73 173 76 176 80 82 84 87 122 91 93 95 162 98 165 102 104 106 109 113 115 117 120 124 126 128 131 144 135 137 139 142 146 148 150 153 166 157 159 161 164 168 170 172 175,2 4 16 8 9 11 13 15 19 20 22 24 26 38 30 31 33 35 37 41 42 44 46 48 82 52 53 55 57 59 104 63 64 66 68 70 115 74 75 77 79 81 85 86 88 90 92 126 96 97 99 101 103 107 108 110 112 114 118 119 121 123 125 129 130 132 134 136 148 140 141 143 145 147 151 152 154 156 158 170 162 163 165 167 169 173 174 176,23 46 47 6 7 52 20 21 33 34 57 58 17 18 63 44 68 69 28 29 74 42 43 90 91 39 40 96 67 50 51 86 87 77 89 61 62 108 109 99 72 73 119 120 111 134 135 83 84 140 121 94 95 130 131 122 145 146 105 106 151 132 156 157 116 117 162 167 168 127 128 173 155 138 139 152 153 165 166 149 150 176 160 161 174 175 171 172:5 6 6 5 6 6 5 6 5 6 5 6 5 6 5 5,4 4 3 4 4 4 4 3 4 3 4 3 4 3 4 4 3 4 4 4 4 3 4 3> {(2, 63): 't2', (1, 125): 'tau3^-1', (2, 42): 't1', (2, 52): 't3', (2, 53): 't3', (2, 54): 't3*tau2', (1, 114): 'tau2', (0, 55): 't2', (2, 172): 't1^-1', (2, 173): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 174): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 175): 'tau2^-1*t3^-1', (2, 40): 't1', (2, 41): 't1', (0, 44): 't3', (2, 164): 't1*tau3*t2^-1', (2, 165): 't1^-1*tau3^-1*t2', (0, 32): 't1^-1', (2, 167): 't1^-1', (2, 32): 't1^-1', (2, 166): 't1^-1', (2, 34): 't1', (2, 35): 't1', (0, 154): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (0, 33): 't1', (2, 152): 'tau1', (2, 154): 'tau2*t3', (0, 29): 't1^-1', (1, 81): 't3^-1', (2, 151): 'tau1', (2, 33): 't1', (0, 143): 'tau1', (2, 129): 'tau3^-1', (2, 130): 'tau3^-1', (1, 59): 't2', (0, 121): 'tau3^-1', (2, 121): 'tau3^-1*t2', (2, 118): 'tau2', (2, 119): 'tau2', (1, 169): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 110): 'tau2*t3', (0, 110): 'tau2', (0, 98): 't1^-1', (1, 37): 't1', (2, 98): 'tau3*t2^-1', (2, 108): 't2^-1', (0, 95): 't1^-1', (1, 147): 'tau1'}