U-tiling: UQC4858
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1777 |
*22222 |
(4,6,2) |
{4,4,3,4} |
{5.5.5.5}{5.6.6.5}{5.6.6}{6.6.6.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10078
|
|
P4/mmm |
123 |
tetragonal |
{4,4,3,3} |
24 |
(4,6) |
G
|
False
|
|
sqc10399
|
|
I4122 |
98 |
tetragonal |
{4,4,3,4} |
24 |
(4,7) |
D
|
False
|
|
sqc4197
|
|
P4222 |
93 |
tetragonal |
{3,4,4,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {4,4,3,4} |
2D vertex symbol | {5.5.5.5}{5.6.6.5}{5.6.6}{6.6.6.6} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<64.3:176:100 3 5 7 30 10 33 78 14 16 18 41 21 44 122 25 27 29 32 111 36 38 40 43 144 47 49 51 74 54 77 133 58 60 62 96 65 99 166 69 71 73 76 80 82 84 118 87 121 155 91 93 95 98 102 104 106 129 109 132 113 115 117 120 124 126 128 131 135 137 139 162 142 165 146 148 150 173 153 176 157 159 161 164 168 170 172 175,2 4 104 8 9 11 13 15 82 19 20 22 24 26 126 30 31 33 35 37 115 41 42 44 46 48 148 52 53 55 57 59 137 63 64 66 68 70 170 74 75 77 79 81 85 86 88 90 92 159 96 97 99 101 103 107 108 110 112 114 118 119 121 123 125 129 130 132 134 136 140 141 143 145 147 151 152 154 156 158 162 163 165 167 169 173 174 176,23 13 14 6 7 19 108 109 55 34 17 18 86 87 66 35 36 28 29 41 130 131 77 39 40 119 120 99 67 79 80 50 51 85 152 153 89 101 102 61 62 107 141 142 112 113 72 73 118 174 175 111 83 84 143 123 124 94 95 129 163 164 122 105 106 154 116 117 165 127 128 176 155 145 146 138 139 151 166 149 150 167 168 160 161 173 171 172:5 6 5 6 5 5 5 6 5 6 5 6 5 6 6 6,4 4 3 4 3 4 4 3 4 3 4 4 4 3 4 4 3 4 3 4 3 4 4 4> {(2, 62): 't2', (1, 125): 't1', (2, 57): 't2', (2, 55): 't2*tau3^-1', (2, 51): 't3', (2, 172): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 43): 't1', (0, 40): 't1', (2, 175): 't1^-1', (2, 40): 't1', (0, 175): 't1^-1*tau3^-1*t2', (0, 172): 't1^-1*tau3^-1*t2', (2, 43): 't1', (2, 165): 'tau2^-1*t3^-1', (2, 166): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 167): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 162): 't1', (2, 163): 't1', (0, 161): 'tau2*t3', (1, 92): 't1^-1', (2, 154): 't1*tau3*t2^-1', (2, 150): 'tau1', (0, 22): 't1^-1', (2, 145): 'tau1', (0, 142): 't3^-1*tau2^-1', (2, 34): 't1', (2, 133): 'tau1^-1', (2, 35): 't1', (2, 128): 'tau3^-1', (2, 129): 't1', (2, 130): 't1', (0, 120): 'tau2*t3', (2, 122): 'tau3^-1', (2, 123): 'tau3^-1', (2, 117): 'tau2', (2, 112): 'tau2', (0, 117): 'tau2*t3', (0, 106): 't2^-1*tau3', (2, 111): 'tau2', (0, 109): 't2^-1*tau3', (2, 44): 't3*tau2', (0, 88): 't1^-1', (2, 45): 't3', (2, 46): 't3', (2, 56): 't2', (2, 22): 't1^-1'}