U-tiling: UQC493
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc333 |
*2244 |
(2,4,3) |
{6,4} |
{4.8.3.3.8.4}{3.3.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc5456
|
|
P42/mmc |
131 |
tetragonal |
{4,5} |
10 |
(2,4) |
G
|
False
|
|
sqc6549
|
|
I-42d |
122 |
tetragonal |
{4,6} |
10 |
(2,4) |
D
|
False
|
|
sqc1316
|
|
P4/mmm |
123 |
tetragonal |
{6,4} |
5 |
(2,4) |
Topological data
Vertex degrees | {6,4} |
2D vertex symbol | {4.8.3.3.8.4}{3.3.3.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<26.1:112:2 17 18 12 13 63 9 24 25 70 16 33 34 77 23 40 41 84 30 45 46 91 37 52 53 98 44 54 55 105 51 112 58 73 74 68 69 65 80 81 72 89 90 79 96 97 86 101 102 93 108 109 100 110 111 107,15 3 5 7 22 10 12 14 17 19 21 24 26 28 43 31 33 35 50 38 40 42 45 47 49 52 54 56 71 59 61 63 78 66 68 70 73 75 77 80 82 84 99 87 89 91 106 94 96 98 101 103 105 108 110 112,43 44 4 6 49 50 51 11 13 56 22 23 18 20 28 25 27 36 37 32 34 42 39 41 46 48 53 55 99 100 60 62 105 106 107 67 69 112 78 79 74 76 84 81 83 92 93 88 90 98 95 97 102 104 109 111:3 8 4 3 4 4 3 3 4 3 8 3 3 3,4 6 6 6 6 4 6 6 6 6> {(1, 21): 't1', (0, 51): 't3^-1*tau2^-1*t3^-1', (0, 80): 'tau3^-1', (0, 95): 't3*tau2*t1^-1', (1, 77): 'tau3^-1', (2, 50): 't3^-1*tau2^-1*t1', (2, 49): 't3^-1*tau2^-1*t1', (0, 96): 't3*tau2*t1^-1', (0, 45): 't3^-1', (0, 59): 't2', (0, 100): 'tau1^-1', (1, 91): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (0, 52): 't3^-1*tau2^-1*t3^-1', (0, 23): 't1', (2, 106): 't3^-1*tau2^-1*t1', (1, 28): 't3', (0, 79): 'tau3^-1', (0, 101): 'tau1^-1', (2, 55): 't3^-1*tau2^-1*t1', (0, 108): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (1, 98): 'tau1^-1', (0, 93): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (2, 111): 't3^-1*tau2^-1*t1', (1, 70): 't2^-1', (2, 63): 't1^-1*tau2*t3', (0, 24): 't1', (0, 40): 't3*tau2*t1^-1', (1, 49): 't3^-1*tau2^-1*t3^-1', (0, 44): 't3^-1', (0, 25): 't1*tau2^-1*t3^-1', (0, 58): 't2', }