U-tiling: UQC4970
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1822 |
*2626 |
(4,5,2) |
{24,3,4,12} |
{3.4.4.3.3.4.4.3.3.4.4.3.3.4.4.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc8181
|
|
R-3m |
166 |
rhombohedral |
{24,3,4,12} |
11 |
(4,5) |
G
|
False
|
|
sqc8173
|
|
R-3m |
166 |
rhombohedral |
{24,3,4,12} |
11 |
(4,6) |
D
|
False
|
|
sqc8192
|
|
R-3m |
166 |
rhombohedral |
{24,3,4,12} |
11 |
(4,5) |
Topological data
Vertex degrees | {24,3,4,12} |
2D vertex symbol | {3.4.4.3.3.4.4.3.3.4.4.3.3.4.4.3.3.4.4.3.3.4.4.3}{3.4.4}{4.4.4.4}{4.4.4.4.4.4.4.4.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<13.1:132:100 3 5 7 9 11 89 14 16 18 20 22 122 25 27 29 31 33 111 36 38 40 42 44 56 47 49 51 53 55 58 60 62 64 66 78 69 71 73 75 77 80 82 84 86 88 91 93 95 97 99 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132,2 102 6 11 8 10 13 91 17 22 19 21 24 124 28 33 30 32 35 113 39 44 41 43 46 58 50 55 52 54 57 61 66 63 65 68 80 72 77 74 76 79 83 88 85 87 90 94 99 96 98 101 105 110 107 109 112 116 121 118 120 123 127 132 129 131,23 4 5 17 18 118 119 109 110 34 15 16 129 130 98 99 26 27 50 51 85 86 131 132 37 38 61 62 74 75 120 121 67 48 49 107 108 65 66 78 59 60 96 97 70 71 94 95 87 88 81 82 105 106 111 92 93 122 103 104 114 115 127 128 125 126:3 4 3 4 3 4 3 4 3 4 4 3 4 4 4 4 4 4,24 3 4 12 3 3 4 3 4 3 3> {(2, 62): 't2', (2, 63): 't2', (0, 44): 'tau1', (2, 52): 't3', (2, 53): 'tau1', (2, 54): 'tau1', (1, 123): 'tau2', (2, 51): 't3', (2, 40): 't2', (2, 41): 't2', (2, 42): 'tau3', (2, 43): 'tau3', (0, 33): 'tau3', (2, 32): 'tau2^-1', (2, 29): 't3', (2, 30): 't3', (2, 31): 'tau2^-1', (2, 20): 'tau3', (2, 21): 'tau3', (0, 22): 'tau2^-1', (2, 18): 't1^-1', (2, 19): 't1^-1', (0, 11): 'tau3', (2, 8): 't1^-1', (2, 9): 'tau2^-1', (2, 10): 'tau2^-1', (1, 112): 'tau3^-1', (0, 0): 'tau2^-1', (2, 7): 't1^-1', (1, 79): 'tau1^-1', (1, 101): 'tau2', (1, 90): 'tau3^-1', (1, 46): 'tau1', (2, 86): 'tau1^-1', (2, 87): 'tau1^-1', (0, 77): 'tau1^-1'}