U-tiling: UQC5030
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1848 |
*22222 |
(4,5,2) |
{4,8,6,4} |
{5.5.5.5}{5.3.3.5.5.3.3.5}{5.3.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9952
|
|
P4/mmm |
123 |
tetragonal |
{3,8,6,4} |
16 |
(4,5) |
G
|
False
|
|
sqc10251
|
|
I4122 |
98 |
tetragonal |
{4,8,6,4} |
16 |
(4,6) |
D
|
False
|
|
sqc4540
|
|
P4222 |
93 |
tetragonal |
{4,6,8,4} |
8 |
(4,5) |
Topological data
Vertex degrees | {4,8,6,4} |
2D vertex symbol | {5.5.5.5}{5.3.3.5.5.3.3.5}{5.3.3.5.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<8.2:176:45 3 5 7 9 11 56 14 16 18 20 22 67 25 27 29 31 33 89 36 38 40 42 44 47 49 51 53 55 58 60 62 64 66 69 71 73 75 77 133 80 82 84 86 88 91 93 95 97 99 144 102 104 106 108 110 155 113 115 117 119 121 166 124 126 128 130 132 135 137 139 141 143 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 4 49 8 11 10 13 15 60 19 22 21 24 26 71 30 33 32 35 37 93 41 44 43 46 48 52 55 54 57 59 63 66 65 68 70 74 77 76 79 81 137 85 88 87 90 92 96 99 98 101 103 148 107 110 109 112 114 159 118 121 120 123 125 170 129 132 131 134 136 140 143 142 145 147 151 154 153 156 158 162 165 164 167 169 173 176 175,100 24 25 6 7 19 20 32 33 78 35 36 17 18 43 44 122 28 29 41 42 111 39 40 144 68 69 50 51 85 86 76 77 133 90 91 61 62 107 108 98 99 166 72 73 118 119 112 113 83 84 120 121 155 94 95 129 130 123 124 105 106 131 132 116 117 127 128 156 157 138 139 151 152 164 165 167 168 149 150 175 176 160 161 173 174 171 172:5 3 5 3 5 3 5 3 3 3 3 5 3 3 5 3 5 3 5 3 3 3 3 3,4 8 6 4 4 6 4 8 4 4 8 4 6 6 8 4> {(2, 62): 't2', (2, 63): 't2', (2, 56): 't2*tau3^-1', (2, 57): 't2*tau3^-1', (2, 52): 't3', (2, 51): 't3', (2, 172): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 45): 't3*tau2', (2, 46): 't3*tau2', (2, 175): 't1^-1*tau3^-1*t2', (2, 40): 't1', (2, 41): 't1', (2, 42): 't1', (2, 43): 't1', (2, 164): 'tau2*t3', (1, 125): 't1', (2, 166): 'tau2^-1*t3^-1', (2, 167): 'tau2^-1*t3^-1', (2, 162): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (2, 163): 'tau2*t3', (2, 156): 't1*tau3*t2^-1', (0, 33): 't1', (2, 152): 't2^-1*tau3*t1', (2, 23): 't1^-1', (2, 154): 't1', (2, 155): 't1*tau3*t2^-1', (2, 22): 't1^-1', (2, 151): 'tau1', (2, 139): 'tau1^-1', (0, 165): 't1^-1', (2, 128): 'tau3^-1', (2, 129): 'tau3^-1', (2, 2): 't1', (2, 131): 'tau3^-1*t2', (2, 120): 'tau2*t3', (2, 117): 'tau2', (2, 118): 'tau2', (2, 119): 'tau2*t3', (2, 108): 't2^-1*tau3', (1, 92): 't1^-1'}