U-tiling: UQC5032
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1848 |
*22222 |
(4,5,2) |
{4,8,6,4} |
{5.5.5.5}{5.3.3.5.5.3.3.5}{5.3.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9953
|
|
P4/mmm |
123 |
tetragonal |
{3,8,6,4} |
16 |
(4,5) |
G
|
False
|
|
sqc10323
|
|
I4122 |
98 |
tetragonal |
{4,8,6,4} |
16 |
(4,6) |
D
|
False
|
|
sqc4365
|
|
P4222 |
93 |
tetragonal |
{8,6,4,4} |
8 |
(4,5) |
Topological data
Vertex degrees | {4,8,6,4} |
2D vertex symbol | {5.5.5.5}{5.3.3.5.5.3.3.5}{5.3.3.5.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<8.1:176:23 3 5 7 9 11 34 14 16 18 20 22 25 27 29 31 33 36 38 40 42 44 67 47 49 51 53 55 89 58 60 62 64 66 69 71 73 75 77 111 80 82 84 86 88 91 93 95 97 99 122 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132 155 135 137 139 141 143 166 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 4 27 8 11 10 13 15 38 19 22 21 24 26 30 33 32 35 37 41 44 43 46 48 71 52 55 54 57 59 93 63 66 65 68 70 74 77 76 79 81 115 85 88 87 90 92 96 99 98 101 103 126 107 110 109 112 114 118 121 120 123 125 129 132 131 134 136 159 140 143 142 145 147 170 151 154 153 156 158 162 165 164 167 169 173 176 175,45 101 102 6 7 30 31 21 22 56 79 80 17 18 41 42 67 123 124 28 29 43 44 89 112 113 39 40 145 146 50 51 74 75 87 88 134 135 61 62 96 97 109 110 167 168 72 73 120 121 133 83 84 118 119 156 157 94 95 131 132 144 105 106 129 130 155 116 117 166 127 128 138 139 162 163 153 154 149 150 173 174 160 161 175 176 171 172:5 3 5 3 3 3 5 3 5 3 3 5 3 3 5 3 3 3 5 3 5 3 3 3,4 8 6 4 4 8 4 4 8 6 4 8 6 4 6 4> {(2, 62): 't2*tau3^-1', (2, 63): 't2*tau3^-1', (1, 125): 'tau3^-1*t2', (2, 52): 't3*tau2', (2, 53): 't3', (2, 54): 't3', (1, 114): 'tau2*t3', (2, 51): 't3*tau2', (2, 172): 'tau2^-1*t3^-1', (2, 173): 'tau2^-1*t3^-1', (2, 174): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 175): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 42): 't1', (2, 43): 't1', (2, 165): 't1^-1', (0, 33): 't1', (2, 33): 't1', (0, 165): 't1^-1*tau3^-1*t2', (0, 154): 'tau2*t3', (2, 30): 't1^-1', (2, 24): 't1^-1', (2, 155): 't1', (2, 23): 't1^-1', (2, 161): 't1*tau3*t2^-1', (2, 140): 't2*tau3^-1*t1^-1', (2, 141): 'tau1^-1', (2, 142): 'tau1^-1', (2, 7): 't1', (2, 130): 'tau3^-1', (2, 156): 't1', (0, 121): 'tau3^-1*t2', (2, 120): 'tau2', (2, 119): 'tau2', (1, 169): 't1^-1*tau3^-1*t2', (2, 109): 't2^-1', (0, 110): 'tau2*t3', (2, 98): 'tau3', (2, 108): 't2^-1', (1, 158): 'tau2*t3', (1, 15): 't1^-1'}