U-tiling: UQC5112
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1903 |
*2244 |
(4,5,2) |
{8,4,8,4} |
{5.3.3.5.5.3.3.5}{5.5.3.3}{3.3.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10003
|
|
P42/mmc |
131 |
tetragonal |
{7,4,8,4} |
16 |
(4,5) |
G
|
False
|
|
sqc10270
|
|
I-42d |
122 |
tetragonal |
{8,4,8,4} |
16 |
(4,6) |
D
|
False
|
|
sqc4124
|
|
P-42m |
111 |
tetragonal |
{4,4,8,8} |
8 |
(4,5) |
Topological data
Vertex degrees | {8,4,8,4} |
2D vertex symbol | {5.3.3.5.5.3.3.5}{5.5.3.3}{3.3.3.3.3.3.3.3}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<33.1:176:67 3 5 7 9 11 78 14 16 18 20 22 34 25 27 29 31 33 36 38 40 42 44 56 47 49 51 53 55 58 60 62 64 66 69 71 73 75 77 80 82 84 86 88 155 91 93 95 97 99 166 102 104 106 108 110 122 113 115 117 119 121 124 126 128 130 132 144 135 137 139 141 143 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 10 6 9 8 77 13 21 17 20 19 88 24 32 28 31 30 44 35 43 39 42 41 46 54 50 53 52 66 57 65 61 64 63 68 76 72 75 74 79 87 83 86 85 90 98 94 97 96 165 101 109 105 108 107 176 112 120 116 119 118 132 123 131 127 130 129 134 142 138 141 140 154 145 153 149 152 151 156 164 160 163 162 167 175 171 174 173,89 4 5 17 18 30 31 32 33 100 15 16 41 42 43 44 111 26 27 50 51 122 37 38 61 62 133 48 49 74 75 76 77 144 59 60 85 86 87 88 155 70 71 83 84 166 81 82 92 93 105 106 118 119 120 121 103 104 129 130 131 132 114 115 138 139 125 126 149 150 136 137 162 163 164 165 147 148 173 174 175 176 158 159 171 172 169 170:5 3 5 3 5 3 3 5 3 3 3 3 5 3 5 3 5 3 3 5 3 3 3 3,8 4 8 4 4 8 8 4 4 8 4 8 4 4 4 4> {(2, 60): 't3*tau2*t1^-1', (2, 61): 't3*tau2*t1^-1', (2, 62): 't3*tau2*t3', (2, 63): 't3*tau2*t3', (2, 52): 't3', (2, 53): 't3', (2, 54): 't3', (2, 51): 't3', (2, 172): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 173): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 174): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 175): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (1, 109): 't1^-1*tau2*t3', (2, 41): 't1', (2, 42): 't1', (2, 43): 't1', (2, 164): 'tau1^-1', (2, 161): 'tau1^-1', (2, 162): 'tau1^-1', (2, 163): 'tau1^-1', (2, 18): 't1^-1', (0, 11): 't1^-1*tau2*t3', (0, 165): 't3^-1*tau2^-1*t1', (2, 129): 'tau3^-1', (2, 130): 'tau3^-1', (2, 131): 'tau3^-1', (2, 126): 't1*tau2^-1*t3^-1', (2, 127): 't1*tau2^-1*t3^-1', (2, 120): 't2^-1', (2, 117): 't2^-1', (2, 118): 't2^-1', (2, 106): 'tau3', (2, 97): 't2', (1, 87): 't3^-1*tau2^-1*t1', (2, 86): 't3^-1*tau2^-1*t3^-1', (2, 87): 't3^-1*tau2^-1*t3^-1'}