U-tiling: UQC5114
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1905 |
*2626 |
(4,5,2) |
{24,4,4,6} |
{5.3.3.5.5.3.3.5.5.3.3.5.5.3.3.5... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc8187
|
|
R-3m |
166 |
rhombohedral |
{24,4,4,6} |
11 |
(4,5) |
G
|
False
|
|
sqc8180
|
|
R-3m |
166 |
rhombohedral |
{24,4,4,6} |
11 |
(4,6) |
D
|
False
|
|
sqc8178
|
|
R-3m |
166 |
rhombohedral |
{24,4,4,6} |
11 |
(4,5) |
Topological data
Vertex degrees | {24,4,4,6} |
2D vertex symbol | {5.3.3.5.5.3.3.5.5.3.3.5.5.3.3.5.5.3.3.5.5.3.3.5}{5.5.3.3}{3.3.3.3}{5.5.5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<19.1:132:100 3 5 7 9 11 89 14 16 18 20 22 122 25 27 29 31 33 111 36 38 40 42 44 56 47 49 51 53 55 58 60 62 64 66 78 69 71 73 75 77 80 82 84 86 88 91 93 95 97 99 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132,2 10 6 9 8 110 13 21 17 20 19 99 24 32 28 31 30 132 35 43 39 42 41 121 46 54 50 53 52 66 57 65 61 64 63 68 76 72 75 74 88 79 87 83 86 85 90 98 94 97 96 101 109 105 108 107 112 120 116 119 118 123 131 127 130 129,23 4 5 17 18 118 119 120 121 34 15 16 129 130 131 132 26 27 50 51 85 86 87 88 37 38 61 62 74 75 76 77 67 48 49 107 108 109 110 78 59 60 96 97 98 99 70 71 94 95 81 82 105 106 111 92 93 122 103 104 114 115 127 128 125 126:5 3 5 3 5 3 5 3 5 3 3 5 3 3 3 3 3 3,24 4 4 6 4 4 4 4 4 4 4> {(1, 120): 'tau3^-1', (2, 62): 't2', (2, 63): 't2', (0, 44): 'tau1', (2, 52): 't3', (2, 53): 't3', (2, 54): 't3', (2, 51): 't3', (2, 40): 't2', (2, 41): 't2', (2, 42): 't2', (2, 43): 't2', (0, 33): 'tau3', (2, 32): 't3', (2, 29): 't3', (2, 30): 't3', (2, 31): 't3', (2, 20): 't1^-1', (2, 21): 't1^-1', (0, 22): 'tau2^-1', (2, 18): 't1^-1', (2, 19): 't1^-1', (1, 98): 'tau3^-1', (0, 11): 'tau3', (2, 8): 't1^-1', (2, 9): 't1^-1', (2, 10): 't1^-1', (1, 65): 'tau1^-1', (0, 0): 'tau2^-1', (2, 7): 't1^-1', (1, 32): 'tau2^-1', (2, 97): 't2^-1', (2, 98): 't2^-1', (1, 87): 'tau1^-1', (1, 10): 'tau2^-1', (0, 77): 'tau1^-1'}