U-tiling: UQC5119
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1908 |
*2244 |
(4,5,2) |
{4,4,8,4} |
{10.3.3.10}{10.10.3.3}{3.3.3.3.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10471
|
|
P4/nmm |
129 |
tetragonal |
{4,4,8,4} |
20 |
(4,5) |
G
|
False
|
|
sqc10475
|
|
I41/a |
88 |
tetragonal |
{4,4,8,4} |
20 |
(4,6) |
D
|
False
|
|
sqc10472
|
|
I41/amd |
141 |
tetragonal |
{4,4,8,4} |
20 |
(4,5) |
Topological data
Vertex degrees | {4,4,8,4} |
2D vertex symbol | {10.3.3.10}{10.10.3.3}{3.3.3.3.3.3.3.3}{10.10.10.10} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<34.1:176:12 3 5 7 9 11 14 16 18 20 22 45 25 27 29 31 33 56 36 38 40 42 44 47 49 51 53 55 58 60 62 64 66 78 69 71 73 75 77 80 82 84 86 88 122 91 93 95 97 99 111 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132 155 135 137 139 141 143 166 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 10 6 9 8 77 13 21 17 20 19 88 24 32 28 31 30 99 35 43 39 42 41 121 46 54 50 53 52 132 57 65 61 64 63 110 68 76 72 75 74 79 87 83 86 85 90 98 94 97 96 101 109 105 108 107 112 120 116 119 118 123 131 127 130 129 134 142 138 141 140 176 145 153 149 152 151 165 156 164 160 163 162 167 175 171 174 173,67 4 5 72 73 30 31 32 33 78 15 16 83 84 41 42 43 44 89 26 27 94 95 111 37 38 116 117 122 48 49 127 128 151 152 153 154 100 59 60 105 106 173 174 175 176 70 71 107 108 109 110 81 82 129 130 131 132 92 93 140 141 142 143 103 104 114 115 162 163 164 165 125 126 166 136 137 171 172 155 147 148 160 161 158 159 169 170:10 3 3 10 3 10 3 3 3 3 3 3 3 3 3 10 3 3 3 3,4 4 8 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 60): 't2^-1*tau3', (2, 61): 't2^-1*tau3', (2, 16): 't1^-1', (2, 55): 't2^-1*tau3', (2, 49): 't3^-1*tau2^-1', (2, 50): 't3^-1*tau2^-1', (2, 44): 't3^-1*tau2^-1', (2, 170): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 171): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 165): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 38): 'tau3*t2^-1', (0, 33): 't2', (2, 160): 't2*tau3^-1*t1^-1*tau2*t3', (2, 33): 'tau3*t2^-1', (0, 165): 'tau1', (2, 28): 'tau2^-1*t3^-1', (2, 39): 'tau3*t2^-1', (2, 154): 't2*tau3^-1*t1^-1*tau2*t3', (2, 27): 'tau2^-1*t3^-1', (2, 148): 't3^-1*tau2^-1*t1*tau3*t2^-1', (2, 22): 'tau2^-1*t3^-1', (0, 22): 't3', (2, 17): 't1^-1', (2, 11): 't1^-1', (2, 5): 't1^-1', (2, 6): 't1^-1', (2, 0): 't1^-1', (0, 132): 'tau1', (0, 121): 't3^-1', (0, 99): 't2^-1'}