U-tiling: UQC5121
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1909 |
*2244 |
(4,5,2) |
{4,4,4,4} |
{20.3.3.20}{20.20.3.3}{3.3.3.3}{... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc4659
|
|
P4/mmm |
123 |
tetragonal |
{4,4,4,4} |
11 |
(4,5) |
G
|
False
|
|
sqc10675
|
|
I41/a |
88 |
tetragonal |
{4,4,4,4} |
22 |
(4,6) |
D
|
False
|
|
sqc10676
|
|
I41/amd |
141 |
tetragonal |
{4,4,4,4} |
22 |
(4,5) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {20.3.3.20}{20.20.3.3}{3.3.3.3}{20.20.20.20} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<35.1:176:67 3 5 7 9 11 78 14 16 18 20 22 89 25 27 29 31 33 111 36 38 40 42 44 122 47 49 51 53 55 100 58 60 62 64 66 69 71 73 75 77 80 82 84 86 88 91 93 95 97 99 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132 166 135 137 139 141 143 155 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 10 6 9 8 33 13 21 17 20 19 44 24 32 28 31 30 35 43 39 42 41 46 54 50 53 52 154 57 65 61 64 63 176 68 76 72 75 74 110 79 87 83 86 85 132 90 98 94 97 96 143 101 109 105 108 107 112 120 116 119 118 165 123 131 127 130 129 134 142 138 141 140 145 153 149 152 151 156 164 160 163 162 167 175 171 174 173,12 4 5 17 18 74 75 76 77 15 16 85 86 87 88 45 26 27 50 51 96 97 98 99 56 37 38 61 62 118 119 120 121 48 49 129 130 131 132 59 60 107 108 109 110 78 70 71 83 84 81 82 122 92 93 127 128 111 103 104 116 117 114 115 125 126 155 136 137 160 161 173 174 175 176 166 147 148 171 172 162 163 164 165 158 159 169 170:20 3 20 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 60): 't2^-1', (2, 61): 't2^-1', (2, 62): 't2^-1*tau3', (2, 63): 't2^-1*tau3', (2, 42): 'tau3*t2^-1', (2, 55): 't2^-1', (2, 49): 't3^-1', (2, 50): 't3^-1', (2, 172): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 173): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 174): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 175): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 40): 'tau3*t2^-1', (2, 41): 'tau3*t2^-1', (2, 170): 'tau1', (2, 171): 'tau1', (2, 164): 't2*tau3^-1*t1^-1*tau2*t3', (2, 165): 'tau1', (2, 160): 'tau1^-1', (2, 161): 't2*tau3^-1*t1^-1*tau2*t3', (2, 162): 't2*tau3^-1*t1^-1*tau2*t3', (2, 163): 't2*tau3^-1*t1^-1*tau2*t3', (2, 29): 'tau2^-1*t3^-1', (2, 30): 'tau2^-1*t3^-1', (2, 159): 'tau1^-1', (2, 154): 'tau1^-1', (2, 20): 't1^-1', (2, 32): 'tau2^-1*t3^-1', (2, 18): 't1^-1', (2, 19): 't1^-1', (2, 8): 't1^-1', (2, 9): 't1^-1', (2, 10): 't1^-1', (2, 7): 't1^-1', (2, 128): 'tau2*t3', (2, 129): 'tau2*t3', (2, 130): 'tau2*t3', (2, 131): 'tau2*t3', (2, 126): 't3^-1', (2, 127): 't3^-1', (2, 121): 't3^-1', (2, 116): 't2', (2, 43): 'tau3*t2^-1', (2, 115): 't2', (2, 108): 'tau3^-1*t2', (2, 109): 'tau3^-1*t2', (2, 110): 't2', (2, 31): 'tau2^-1*t3^-1', (2, 44): 't3^-1', (2, 21): 't1^-1'}