U-tiling: UQC5197
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc211 |
*2224 |
(2,4,2) |
{4,4} |
{8.4.4.8}{4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11157
|
|
P4/mmm |
123 |
tetragonal |
{4,4,4,4} |
24 |
(4,6) |
G
|
False
|
|
sqc11156
|
|
I4122 |
98 |
tetragonal |
{4,4,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc5338
|
|
P4222 |
93 |
tetragonal |
{4,4,4,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {8.4.4.8}{8.8.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<15.1:192:25 3 5 7 9 11 24 37 15 17 19 21 23 27 29 31 33 35 48 39 41 43 45 47 73 51 53 55 57 59 96 97 63 65 67 69 71 120 75 77 79 81 83 132 121 87 89 91 93 95 99 101 103 105 107 144 133 111 113 115 117 119 123 125 127 129 131 135 137 139 141 143 169 147 149 151 153 155 168 181 159 161 163 165 167 171 173 175 177 179 192 183 185 187 189 191,2 12 6 11 8 10 14 24 18 23 20 22 26 36 30 35 32 34 38 48 42 47 44 46 50 60 54 59 56 58 62 72 66 71 68 70 74 84 78 83 80 82 86 96 90 95 92 94 98 108 102 107 104 106 110 120 114 119 116 118 122 132 126 131 128 130 134 144 138 143 140 142 146 156 150 155 152 154 158 168 162 167 164 166 170 180 174 179 176 178 182 192 186 191 188 190,49 4 5 54 55 116 117 34 35 36 61 16 17 66 67 92 93 46 47 48 73 28 29 78 79 140 141 97 40 41 102 103 128 129 52 53 164 165 82 83 84 64 65 152 153 106 107 108 76 77 188 189 145 88 89 150 151 130 131 132 100 101 176 177 157 112 113 162 163 142 143 144 169 124 125 174 175 181 136 137 186 187 148 149 178 179 180 160 161 190 191 192 172 173 184 185:8 4 4 4 4 8 4 8 4 4 4 4 4 4 4 8 4 4 4 4,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(0, 59): 't3', (2, 190): 'tau2^-1*t3^-1', (2, 191): 'tau2^-1*t3^-1', (0, 191): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 58): 't3*tau2', (2, 59): 't3*tau2', (2, 180): 't1^-1', (2, 176): 't1', (2, 177): 't1*tau3*t2^-1', (2, 178): 't1*tau3*t2^-1', (2, 179): 't1*tau3*t2^-1', (0, 168): 'tau2*t3', (2, 175): 't1', (0, 47): 't1', (2, 42): 't1', (2, 36): 't1', (2, 165): 't3*tau2', (2, 32): 't1^-1', (0, 167): 'tau1', (2, 34): 't1^-1', (2, 57): 't3*tau2', (2, 31): 't1^-1', (2, 186): 't1^-1', (0, 156): 't2^-1*tau3*t1', (2, 185): 't1^-1', (2, 33): 't1^-1', (0, 143): 'tau3^-1', (0, 12): 't1^-1', (0, 131): 'tau2', (2, 35): 't1^-1', (0, 132): 'tau3^-1*t2', (0, 120): 'tau2*t3', (0, 119): 't2^-1', (2, 105): 'tau3*t2^-1', (2, 107): 'tau3*t2^-1', (2, 101): 't1^-1', (2, 70): 't2*tau3^-1'}