U-tiling: UQC5210
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2123 |
*2244 |
(4,5,2) |
{4,8,16,8} |
{3.3.3.3}{3.3.3.3.3.3.3.3}{3.3.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10771
|
|
P42/mmc |
131 |
tetragonal |
{4,8,16,8} |
12 |
(4,5) |
G
|
False
|
|
sqc10725
|
|
I-42d |
122 |
tetragonal |
{4,8,16,8} |
12 |
(4,6) |
D
|
False
|
|
sqc4966
|
|
P-42m |
111 |
tetragonal |
{8,4,8,16} |
6 |
(4,5) |
Topological data
Vertex degrees | {4,8,16,8} |
2D vertex symbol | {3.3.3.3}{3.3.3.3.3.3.3.3}{3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3}{3.3.3.3.3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<1.1:192:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,3 6 5 9 12 11 15 18 17 21 24 23 27 30 29 33 36 35 39 42 41 45 48 47 51 54 53 57 60 59 63 66 65 69 72 71 75 78 77 81 84 83 87 90 89 93 96 95 99 102 101 105 108 107 111 114 113 117 120 119 123 126 125 129 132 131 135 138 137 141 144 143 147 150 149 153 156 155 159 162 161 165 168 167 171 174 173 177 180 179 183 186 185 189 192 191,97 98 15 16 7 8 33 34 83 84 109 110 19 20 45 46 95 96 121 122 51 52 31 32 47 48 133 134 63 64 43 44 145 146 55 56 81 82 71 72 157 158 67 68 93 94 169 170 87 88 79 80 181 182 91 92 111 112 103 104 129 130 179 180 115 116 141 142 191 192 147 148 127 128 143 144 159 160 139 140 151 152 177 178 167 168 163 164 189 190 183 184 175 176 187 188:3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3,4 8 16 8 8 4 8 4 8 4 16 8> {(2, 188): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 189): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 62): 't3*tau2*t1^-1', (2, 63): 't3*tau2*t1^-1', (2, 56): 't3', (2, 57): 't3', (2, 176): 'tau1^-1', (2, 177): 'tau1^-1', (2, 44): 't1', (2, 45): 't1', (2, 191): 't3^-1*tau2^-1*t1', (2, 158): 't3*tau2*t1^-1', (2, 159): 't3*tau2*t1^-1', (2, 22): 't1^-1*tau2*t3', (2, 23): 't1^-1*tau2*t3', (2, 140): 'tau3^-1', (2, 141): 'tau3^-1', (2, 128): 't2^-1', (2, 129): 't2^-1', (2, 118): 't1^-1*tau2*t3', (2, 92): 't3^-1*tau2^-1*t3^-1', (2, 93): 't3^-1*tau2^-1*t3^-1'}