U-tiling: UQC5211
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2123 |
*2244 |
(4,5,2) |
{4,8,16,8} |
{3.3.3.3}{3.3.3.3.3.3.3.3}{3.3.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc4226
|
|
P4/mmm |
123 |
tetragonal |
{6,14,8,4} |
6 |
(4,5) |
G
|
False
|
|
sqc10783
|
|
I41/a |
88 |
tetragonal |
{4,8,16,8} |
12 |
(4,6) |
D
|
False
|
|
sqc10784
|
|
I41/amd |
141 |
tetragonal |
{4,8,16,8} |
12 |
(4,5) |
Topological data
Vertex degrees | {4,8,16,8} |
2D vertex symbol | {3.3.3.3}{3.3.3.3.3.3.3.3}{3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3}{3.3.3.3.3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<1.1:192:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,3 6 5 9 12 11 15 18 17 21 24 23 27 30 29 33 36 35 39 42 41 45 48 47 51 54 53 57 60 59 63 66 65 69 72 71 75 78 77 81 84 83 87 90 89 93 96 95 99 102 101 105 108 107 111 114 113 117 120 119 123 126 125 129 132 131 135 138 137 141 144 143 147 150 149 153 156 155 159 162 161 165 168 167 171 174 173 177 180 179 183 186 185 189 192 191,13 14 75 76 7 8 33 34 83 84 87 88 19 20 45 46 95 96 49 50 99 100 31 32 107 108 61 62 123 124 43 44 131 132 135 136 55 56 165 166 143 144 111 112 67 68 189 190 119 120 85 86 79 80 117 118 91 92 141 142 133 134 103 104 153 154 121 122 115 116 127 128 177 178 139 140 169 170 183 184 151 152 191 192 181 182 171 172 163 164 179 180 175 176 187 188:3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3,4 8 16 8 16 8 4 8 4 8 4 8> {(2, 60): 't2^-1', (2, 61): 't2^-1', (2, 62): 't2^-1*tau3', (2, 63): 't2^-1*tau3', (2, 180): 'tau1', (2, 181): 'tau1', (2, 182): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 183): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 48): 't3^-1', (2, 49): 't3^-1', (2, 50): 't3^-1*tau2^-1', (2, 51): 't3^-1*tau2^-1', (2, 168): 'tau1^-1', (2, 169): 'tau1^-1', (2, 170): 't2*tau3^-1*t1^-1*tau2*t3', (2, 171): 't2*tau3^-1*t1^-1*tau2*t3', (2, 38): 'tau3*t2^-1', (2, 39): 'tau3*t2^-1', (2, 26): 'tau2^-1*t3^-1', (2, 27): 'tau2^-1*t3^-1', (2, 14): 't1^-1', (2, 15): 't1^-1', (2, 132): 't3^-1', (2, 133): 't3^-1', (2, 2): 't1^-1', (2, 3): 't1^-1', (2, 120): 't2', (2, 121): 't2'}