U-tiling: UQC5222
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1516 |
*2244 |
(5,4,2) |
{3,3,4,4,4} |
{4.8.8}{4.8.8}{8.8.8.8}{8.8.8.8}... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc3667
|
|
P4/mmm |
123 |
tetragonal |
{3,3,4,4,4} |
12 |
(5,4) |
G
|
False
|
|
sqc9881
|
|
I41/a |
88 |
tetragonal |
{3,3,4,4,4} |
24 |
(5,5) |
D
|
False
|
|
sqc9882
|
|
I41/amd |
141 |
tetragonal |
{3,3,4,4,4} |
24 |
(5,4) |
Topological data
Vertex degrees | {3,3,4,4,4} |
2D vertex symbol | {4.8.8}{4.8.8}{8.8.8.8}{8.8.8.8}{8.8.8.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<110.1:160:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160,61 12 5 7 26 9 30 71 15 17 36 19 40 81 42 25 27 29 101 52 35 37 39 111 45 47 136 49 140 91 55 57 156 59 160 72 65 67 96 69 100 75 77 116 79 120 112 85 87 126 89 130 102 95 97 99 105 107 146 109 150 115 117 119 151 142 125 127 129 141 152 135 137 139 145 147 149 155 157 159,3 4 65 66 17 18 69 70 13 14 75 76 79 80 23 24 85 86 47 48 89 90 33 34 105 106 57 58 109 110 43 44 115 116 119 120 53 54 95 96 99 100 63 64 77 78 73 74 83 84 117 118 93 94 107 108 103 104 113 114 123 124 155 156 147 148 159 160 133 134 145 146 157 158 149 150 143 144 153 154:4 8 8 4 4 8 8 8 8 8 8 4,3 3 4 4 4 3 4 4 3 3 4 3 3 4 3 3 3 3 3 3 3 4 3 3> {(1, 121): 'tau1', (2, 56): 't2^-1', (2, 57): 't2^-1', (2, 58): 't2^-1*tau3', (2, 59): 't2^-1*tau3', (2, 48): 't3^-1*tau2^-1', (2, 49): 't3^-1*tau2^-1', (2, 46): 't3^-1', (2, 47): 't3^-1', (2, 18): 't1^-1', (1, 111): 't3^-1', (2, 38): 'tau3*t2^-1', (2, 39): 'tau3*t2^-1', (1, 101): 't2', (2, 19): 't1^-1', (2, 28): 'tau2^-1*t3^-1', (2, 29): 'tau2^-1*t3^-1', (2, 159): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 149): 't2*tau3^-1*t1^-1*tau2*t3', (2, 146): 'tau1^-1', (2, 147): 'tau1^-1', (2, 8): 't1^-1', (2, 9): 't1^-1', (2, 138): 't3^-1*tau2^-1*t1*tau3*t2^-1', (2, 136): 'tau1^-1', (2, 128): 't3*tau2*t1^-1*tau3^-1*t2', (2, 137): 'tau1^-1', (2, 116): 't3^-1', (2, 117): 't3^-1', (1, 51): 't2^-1', (1, 41): 't3^-1', (2, 106): 't2', (2, 107): 't2', (1, 151): 'tau1'}