U-tiling: UQC5246
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1554 |
*2244 |
(5,4,2) |
{4,3,3,4,4} |
{8.8.8.8}{8.6.8}{8.6.6}{6.6.6.6}... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc9936
|
|
P4/nmm |
129 |
tetragonal |
{4,3,3,4,4} |
24 |
(5,4) |
G
|
False
|
|
sqc9884
|
|
I41/a |
88 |
tetragonal |
{4,3,3,4,4} |
24 |
(5,5) |
D
|
False
|
|
sqc9883
|
|
I41/amd |
141 |
tetragonal |
{4,3,3,4,4} |
24 |
(5,4) |
Topological data
Vertex degrees | {4,3,3,4,4} |
2D vertex symbol | {8.8.8.8}{8.6.8}{8.6.6}{6.6.6.6}{6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<112.1:160:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160,61 3 14 25 7 9 30 71 13 35 17 19 40 81 23 44 27 29 101 33 54 37 39 111 43 135 47 49 140 91 53 155 57 59 160 63 74 95 67 69 100 73 115 77 79 120 83 114 125 87 89 130 93 104 97 99 103 145 107 109 150 113 117 119 151 123 144 127 129 141 133 154 137 139 143 147 149 153 157 159,21 22 5 6 17 18 69 70 31 32 15 16 79 80 25 26 47 48 89 90 35 36 57 58 109 110 131 132 45 46 119 120 151 152 55 56 99 100 91 92 65 66 77 78 111 112 75 76 121 122 85 86 117 118 95 96 107 108 141 142 105 106 115 116 125 126 147 148 159 160 135 136 157 158 149 150 145 146 155 156:8 6 6 8 8 6 6 6 6 6 6 8,4 3 3 4 4 4 3 4 3 4 3 4 3 3 3 3 3 3 3 3 3 3 4 3> {(1, 123): 'tau1', (2, 56): 't2^-1', (2, 57): 't2^-1', (2, 58): 't2^-1*tau3', (2, 59): 't2^-1*tau3', (1, 113): 't3^-1', (2, 48): 't3^-1*tau2^-1', (2, 49): 't3^-1*tau2^-1', (2, 46): 't3^-1', (2, 47): 't3^-1', (2, 18): 't1^-1', (2, 38): 'tau3*t2^-1', (2, 39): 'tau3*t2^-1', (2, 19): 't1^-1', (1, 103): 't2', (2, 28): 'tau2^-1*t3^-1', (2, 29): 'tau2^-1*t3^-1', (2, 158): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 159): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 148): 't2*tau3^-1*t1^-1*tau2*t3', (2, 149): 't2*tau3^-1*t1^-1*tau2*t3', (2, 146): 'tau1^-1', (2, 147): 'tau1^-1', (2, 8): 't1^-1', (2, 9): 't1^-1', (2, 136): 'tau1^-1', (2, 137): 'tau1^-1', (2, 116): 't3^-1', (2, 117): 't3^-1', (1, 53): 't2^-1', (1, 43): 't3^-1', (2, 106): 't2', (2, 107): 't2', (1, 153): 'tau1'}