U-tiling: UQC5290
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1880 |
*2244 |
(5,5,2) |
{4,8,3,3,4} |
{7.7.7.7}{7.7.7.7.7.7.7.7}{7.4.7... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10007
|
|
P42/mmc |
131 |
tetragonal |
{3,8,3,3,4} |
24 |
(5,5) |
G
|
False
|
|
sqc10325
|
|
I-42d |
122 |
tetragonal |
{4,8,3,3,4} |
24 |
(5,6) |
D
|
False
|
|
sqc4544
|
|
P-42m |
111 |
tetragonal |
{3,3,4,8,4} |
12 |
(5,5) |
Topological data
Vertex degrees | {4,8,3,3,4} |
2D vertex symbol | {7.7.7.7}{7.7.7.7.7.7.7.7}{7.4.7}{7.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<119.1:176:67 3 5 7 9 11 78 14 16 18 20 22 34 25 27 29 31 33 36 38 40 42 44 56 47 49 51 53 55 58 60 62 64 66 69 71 73 75 77 80 82 84 86 88 155 91 93 95 97 99 166 102 104 106 108 110 122 113 115 117 119 121 124 126 128 130 132 144 135 137 139 141 143 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 4 6 73 30 10 33 13 15 17 84 41 21 44 24 26 28 40 32 35 37 39 43 46 48 50 62 74 54 77 57 59 61 85 65 88 68 70 72 76 79 81 83 87 90 92 94 161 118 98 121 101 103 105 172 129 109 132 112 114 116 128 120 123 125 127 131 134 136 138 150 162 142 165 145 147 149 173 153 176 156 158 160 164 167 169 171 175,89 13 14 26 27 8 9 76 77 100 37 38 19 20 87 88 111 46 47 30 31 43 44 122 57 58 41 42 133 70 71 52 53 65 66 144 81 82 63 64 155 79 80 74 75 166 85 86 101 102 114 115 96 97 164 165 125 126 107 108 175 176 134 135 118 119 131 132 145 146 129 130 158 159 140 141 153 154 169 170 151 152 167 168 162 163 173 174:7 4 7 4 7 7 4 4 7 4 7 4 7 7 4 4,4 8 3 3 4 3 3 4 3 4 3 3 3 4 8 3 3 4 3 3 3 3 3 3> {(1, 120): 't2^-1', (2, 56): 't3*tau2*t1^-1', (2, 57): 't3*tau2*t1^-1', (2, 58): 't3*tau2*t3', (2, 59): 't3*tau2*t3', (2, 48): 't3', (2, 145): 't3*tau2*t1^-1', (1, 105): 't1^-1*tau2*t3', (2, 174): 't3^-1*tau2^-1*t1', (1, 106): 'tau3', (1, 109): 'tau3', (2, 169): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 36): 't1', (2, 37): 't1', (0, 165): 't3^-1*tau2^-1*t1', (2, 157): 'tau1^-1', (2, 158): 'tau1^-1', (1, 95): 't2', (2, 20): 't1^-1*tau2*t3', (2, 21): 't1^-1*tau2*t3', (1, 83): 't3^-1*tau2^-1*t1', (2, 144): 't3*tau2*t1^-1', (1, 84): 't3^-1*tau2^-1*t3^-1', (2, 146): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (1, 73): 't3^-1', (0, 11): 't1^-1*tau2*t3', (1, 76): 't3^-1', (1, 65): 't3*tau2*t3', (2, 124): 'tau3^-1', (2, 125): 'tau3^-1', (2, 113): 't2^-1', (2, 114): 't2^-1', (2, 109): 't1^-1*tau2*t3', (1, 172): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (1, 161): 'tau1^-1', (1, 164): 'tau1^-1', (1, 153): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (1, 18): 't1^-1', (1, 21): 't1^-1', (2, 47): 't3'}