U-tiling: UQC5292
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1882 |
*2626 |
(5,5,2) |
{12,4,3,3,6} |
{7.7.7.7.7.7.7.7.7.7.7.7}{7.7.7.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc8183
|
|
R-3m |
166 |
rhombohedral |
{12,4,3,3,6} |
17 |
(5,5) |
G
|
False
|
|
sqc8175
|
|
R-3m |
166 |
rhombohedral |
{12,4,3,3,6} |
17 |
(5,5) |
D
|
False
|
|
sqc8189
|
|
R-3m |
166 |
rhombohedral |
{12,4,3,3,6} |
17 |
(5,5) |
Topological data
Vertex degrees | {12,4,3,3,6} |
2D vertex symbol | {7.7.7.7.7.7.7.7.7.7.7.7}{7.7.7.7}{7.4.7}{7.4.4}{4.4.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<63.1:132:100 3 5 7 9 11 89 14 16 18 20 22 122 25 27 29 31 33 111 36 38 40 42 44 56 47 49 51 53 55 58 60 62 64 66 78 69 71 73 75 77 80 82 84 86 88 91 93 95 97 99 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132,2 4 6 106 118 10 121 13 15 17 95 129 21 132 24 26 28 128 85 32 88 35 37 39 117 74 43 77 46 48 50 62 107 54 110 57 59 61 96 65 99 68 70 72 84 76 79 81 83 87 90 92 94 98 101 103 105 109 112 114 116 120 123 125 127 131,23 13 14 114 115 8 9 109 110 34 125 126 19 20 98 99 46 47 81 82 30 31 131 132 57 58 70 71 41 42 120 121 67 103 104 52 53 65 66 78 92 93 63 64 90 91 74 75 87 88 101 102 85 86 111 96 97 122 107 108 123 124 118 119 129 130:7 4 7 4 7 4 7 4 7 4 4 7,12 4 3 3 6 3 3 4 3 3 4 3 3 3 3 3 3> {(1, 120): 't1', (2, 87): 'tau1^-1', (1, 127): 'tau2', (2, 59): 't2', (2, 53): 'tau1', (2, 54): 'tau1', (1, 117): 't1', (0, 55): 'tau1^-1', (1, 105): 'tau2', (1, 106): 't3^-1', (1, 109): 't3^-1', (2, 42): 'tau3', (2, 43): 'tau3', (2, 36): 't2', (2, 37): 't2', (0, 33): 'tau3', (2, 58): 't2', (1, 95): 't2^-1', (1, 94): 'tau3^-1', (2, 20): 'tau3', (2, 21): 'tau3', (1, 83): 'tau1^-1', (2, 4): 't1^-1', (0, 22): 'tau2^-1', (1, 84): 't3^-1', (1, 73): 't2^-1', (0, 11): 'tau3', (2, 14): 't1^-1', (2, 15): 't1^-1', (1, 76): 't2^-1', (2, 10): 'tau2^-1', (1, 65): 't2', (0, 0): 'tau2^-1', (2, 130): 'tau2', (2, 131): 'tau2', (1, 61): 'tau1^-1', (2, 48): 't3', (1, 116): 'tau3^-1', (2, 9): 'tau2^-1', (1, 32): 't3', (2, 25): 't3', (2, 26): 't3', (2, 86): 'tau1^-1', (1, 18): 't1^-1', (1, 21): 't1^-1', (2, 47): 't3', (0, 77): 'tau1^-1', (2, 3): 't1^-1'}