U-tiling: UQC5298
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1884 |
*2244 |
(5,5,2) |
{4,3,4,4,4} |
{7.7.7.7}{7.4.7}{7.7.4.4}{4.4.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10629
|
|
P4/nmm |
129 |
tetragonal |
{4,3,4,4,4} |
24 |
(5,5) |
G
|
False
|
|
sqc10640
|
|
I41/a |
88 |
tetragonal |
{4,3,4,4,4} |
24 |
(5,6) |
D
|
False
|
|
sqc10164
|
|
I41/amd |
141 |
tetragonal |
{4,3,4,4,4} |
24 |
(5,5) |
Topological data
Vertex degrees | {4,3,4,4,4} |
2D vertex symbol | {7.7.7.7}{7.4.7}{7.7.4.4}{4.4.4.4}{7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<120.1:176:67 3 5 7 9 11 78 14 16 18 20 22 89 25 27 29 31 33 111 36 38 40 42 44 122 47 49 51 53 55 100 58 60 62 64 66 69 71 73 75 77 80 82 84 86 88 91 93 95 97 99 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132 166 135 137 139 141 143 155 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 4 10 72 8 75 77 13 15 21 83 19 86 88 24 26 32 94 30 97 99 35 37 43 116 41 119 121 46 48 54 127 52 130 132 57 59 65 105 63 108 110 68 70 76 74 79 81 87 85 90 92 98 96 101 103 109 107 112 114 120 118 123 125 131 129 134 136 142 171 140 174 176 145 147 153 160 151 163 165 156 158 164 162 167 169 175 173,12 68 69 6 7 30 31 32 33 79 80 17 18 41 42 43 44 45 90 91 28 29 56 112 113 39 40 123 124 50 51 151 152 153 154 101 102 61 62 173 174 175 176 78 72 73 107 108 109 110 83 84 129 130 131 132 122 94 95 140 141 142 143 111 105 106 116 117 162 163 164 165 127 128 155 167 168 138 139 166 156 157 149 150 160 161 171 172:7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4,4 3 4 4 4 3 4 4 4 4 3 4 3 3 4 3 4 4 4 4 4 4 3 3> {(2, 23): 'tau2^-1*t3^-1', (2, 56): 't2^-1*tau3', (2, 57): 't2^-1*tau3', (1, 126): 'tau2*t3', (1, 115): 't2*tau3^-1', (2, 55): 't2^-1', (1, 118): 't2*tau3^-1', (2, 44): 't3^-1', (2, 45): 't3^-1*tau2^-1', (2, 46): 't3^-1*tau2^-1', (1, 96): 't3*tau2', (2, 165): 'tau1', (2, 166): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 167): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 34): 'tau3*t2^-1', (2, 35): 'tau3*t2^-1', (2, 156): 't2*tau3^-1*t1^-1*tau2*t3', (2, 24): 'tau2^-1*t3^-1', (2, 154): 'tau1^-1', (2, 155): 't2*tau3^-1*t1^-1*tau2*t3', (1, 82): 't1', (1, 85): 't1', (2, 12): 't1^-1', (2, 13): 't1^-1', (1, 74): 't1', (2, 1): 't1^-1', (2, 2): 't1^-1', (2, 121): 't3^-1', (1, 63): 't2^-1*tau3', (1, 52): 't3^-1*tau2^-1', (2, 110): 't2', (1, 173): 't2^-1*tau3*t1*tau2^-1*t3^-1', (1, 93): 't3*tau2', (1, 162): 't2*tau3^-1*t1^-1*tau2*t3', (1, 60): 't2^-1*tau3', (1, 159): 't2*tau3^-1*t1^-1*tau2*t3', (1, 137): 't3*tau2*t1^-1*tau3^-1*t2', (1, 71): 't1'}