U-tiling: UQC5301
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1885 |
*2244 |
(5,5,2) |
{4,4,3,4,4} |
{7.7.7.7}{7.4.4.7}{7.7.4}{4.4.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10087
|
|
P42/mmc |
131 |
tetragonal |
{3,4,3,4,4} |
24 |
(5,5) |
G
|
False
|
|
sqc10389
|
|
I-42d |
122 |
tetragonal |
{4,4,3,4,4} |
24 |
(5,6) |
D
|
False
|
|
sqc4717
|
|
P-42m |
111 |
tetragonal |
{4,3,4,4,4} |
12 |
(5,5) |
Topological data
Vertex degrees | {4,4,3,4,4} |
2D vertex symbol | {7.7.7.7}{7.4.4.7}{7.7.4}{4.4.4.4}{7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<121.1:176:67 3 5 7 9 11 78 14 16 18 20 22 34 25 27 29 31 33 36 38 40 42 44 56 47 49 51 53 55 58 60 62 64 66 69 71 73 75 77 80 82 84 86 88 155 91 93 95 97 99 166 102 104 106 108 110 122 113 115 117 119 121 124 126 128 130 132 144 135 137 139 141 143 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 4 10 8 29 31 77 13 15 21 19 40 42 88 24 26 32 30 44 35 37 43 41 46 48 54 52 73 75 66 57 59 65 63 84 86 68 70 76 74 79 81 87 85 90 92 98 96 117 119 165 101 103 109 107 128 130 176 112 114 120 118 132 123 125 131 129 134 136 142 140 161 163 154 145 147 153 151 172 174 156 158 164 162 167 169 175 173,89 13 14 6 7 19 20 32 33 100 17 18 43 44 111 46 47 28 29 52 53 122 57 58 39 40 63 64 133 50 51 76 77 144 61 62 87 88 155 79 80 72 73 85 86 166 83 84 101 102 94 95 107 108 120 121 105 106 131 132 134 135 116 117 140 141 145 146 127 128 151 152 138 139 164 165 149 150 175 176 167 168 160 161 173 174 171 172:7 4 7 4 7 7 4 4 7 4 7 4 7 7 4 4,4 4 3 4 4 3 4 4 4 4 3 3 4 4 4 3 4 4 3 4 4 3 3 4> {(2, 62): 't3*tau2*t1^-1', (2, 63): 't3*tau2*t1^-1', (2, 56): 't3*tau2*t1^-1', (2, 57): 't3*tau2*t1^-1', (1, 127): 'tau3^-1', (2, 53): 't3', (2, 54): 't3', (1, 116): 't2^-1', (1, 118): 't2^-1', (2, 174): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 175): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 42): 't1', (2, 43): 't1', (2, 164): 'tau1^-1', (1, 61): 't3*tau2*t3', (0, 165): 't3^-1*tau2^-1*t1', (2, 150): 't3*tau2*t1^-1', (2, 151): 't3*tau2*t1^-1', (2, 144): 't3*tau2*t1^-1', (2, 145): 't3*tau2*t1^-1', (1, 87): 't3^-1*tau2^-1*t1', (0, 11): 't1^-1*tau2*t3', (1, 74): 't3^-1', (2, 163): 'tau1^-1', (2, 130): 'tau3^-1', (2, 131): 'tau3^-1', (2, 120): 't2^-1', (1, 63): 't3*tau2*t3', (1, 50): 't3', (1, 41): 't1', (1, 171): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (1, 173): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (1, 175): 't3^-1*tau2^-1*t1', (1, 162): 'tau1^-1', (2, 97): 't2', (1, 39): 't1', (2, 86): 't3^-1*tau2^-1*t3^-1', (2, 87): 't3^-1*tau2^-1*t3^-1', (1, 107): 'tau3', (1, 138): 'tau1'}