U-tiling: UQC5304
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1887 |
*2626 |
(5,5,2) |
{3,4,6,4,6} |
{7.4.7}{7.7.4.4}{4.4.4.4.4.4}{7.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc8201
|
|
R-3m |
166 |
rhombohedral |
{3,4,6,4,6} |
17 |
(5,5) |
G
|
False
|
|
sqc8202
|
|
R-3 |
148 |
rhombohedral |
{3,4,6,4,6} |
17 |
(5,6) |
D
|
False
|
|
sqc8236
|
|
R-3m |
166 |
rhombohedral |
{3,4,6,4,6} |
17 |
(5,5) |
Topological data
Vertex degrees | {3,4,6,4,6} |
2D vertex symbol | {7.4.7}{7.7.4.4}{4.4.4.4.4.4}{7.7.7.7}{7.7.7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<64.2:132:23 3 5 7 9 11 34 14 16 18 20 22 25 27 29 31 33 36 38 40 42 44 67 47 49 51 53 55 78 58 60 62 64 66 69 71 73 75 77 80 82 84 86 88 111 91 93 95 97 99 122 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132,2 8 103 6 106 10 33 13 19 92 17 95 21 44 24 30 125 28 128 32 35 41 114 39 117 43 46 52 59 50 62 54 77 57 63 61 65 88 68 74 81 72 84 76 79 85 83 87 90 96 94 98 121 101 107 105 109 132 112 118 116 120 123 129 127 131,100 4 5 116 117 118 119 21 22 89 15 16 127 128 129 130 122 26 27 83 84 85 86 54 55 111 37 38 72 73 74 75 65 66 56 48 49 105 106 107 108 59 60 94 95 96 97 78 70 71 98 99 81 82 109 110 92 93 103 104 114 115 131 132 125 126:7 4 7 4 4 4 7 4 7 4 7 7,3 4 6 4 6 3 4 3 4 4 3 4 4 3 4 4 3> {(2, 60): 't2', (2, 61): 't2', (2, 62): 't2', (2, 63): 't2', (1, 124): 'tau2', (1, 127): 'tau2', (2, 52): 't3', (2, 55): 'tau1^-1', (1, 116): 'tau3^-1', (2, 50): 't3', (2, 51): 't3', (1, 105): 'tau2', (2, 40): 't2', (2, 41): 't2', (2, 38): 't2', (2, 39): 't2', (2, 33): 'tau3', (1, 102): 'tau2', (2, 28): 't3', (2, 29): 't3', (2, 30): 't3', (2, 27): 't3', (1, 80): 'tau1^-1', (2, 22): 'tau2^-1', (2, 16): 't1^-1', (2, 17): 't1^-1', (2, 18): 't1^-1', (2, 19): 't1^-1', (1, 113): 'tau3^-1', (2, 8): 't1^-1', (2, 11): 'tau3', (2, 5): 't1^-1', (2, 6): 't1^-1', (2, 7): 't1^-1', (2, 0): 'tau2^-1', (1, 61): 'tau1^-1', (1, 72): 'tau1', (1, 91): 'tau3^-1', (2, 49): 't3', (1, 47): 'tau1', (1, 94): 'tau3^-1', (2, 77): 'tau1^-1'}