U-tiling: UQC5310
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1891 |
*2626 |
(5,5,2) |
{3,4,4,6,6} |
{5.6.5}{5.5.6.6}{6.6.6.6}{6.6.6.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc8237
|
|
R-3m |
166 |
rhombohedral |
{3,4,4,6,6} |
17 |
(5,5) |
G
|
False
|
|
sqc8207
|
|
R-3 |
148 |
rhombohedral |
{3,4,4,6,6} |
17 |
(5,6) |
D
|
False
|
|
sqc8200
|
|
R-3m |
166 |
rhombohedral |
{3,4,4,6,6} |
17 |
(5,5) |
Topological data
Vertex degrees | {3,4,4,6,6} |
2D vertex symbol | {5.6.5}{5.5.6.6}{6.6.6.6}{6.6.6.6.6.6}{5.5.5.5.5.5} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<66.2:132:23 3 5 7 9 11 34 14 16 18 20 22 25 27 29 31 33 36 38 40 42 44 67 47 49 51 53 55 78 58 60 62 64 66 69 71 73 75 77 80 82 84 86 88 111 91 93 95 97 99 122 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132,2 10 103 6 8 108 33 13 21 92 17 19 97 44 24 32 125 28 30 130 35 43 114 39 41 119 46 54 59 50 52 64 77 57 65 61 63 88 68 76 81 72 74 86 79 87 83 85 90 98 94 96 121 101 109 105 107 132 112 120 116 118 123 131 127 129,100 4 5 17 18 118 119 21 22 89 15 16 129 130 122 26 27 50 51 85 86 54 55 111 37 38 61 62 74 75 65 66 56 48 49 107 108 59 60 96 97 78 70 71 94 95 98 99 81 82 105 106 109 110 92 93 103 104 114 115 127 128 131 132 125 126:5 6 5 6 6 6 5 6 5 6 5 5,3 4 4 6 6 3 3 4 4 3 4 4 3 3 4 4 4> {(2, 62): 't2', (2, 63): 't2', (1, 124): 'tau2', (2, 52): 't3', (2, 55): 'tau1^-1', (2, 51): 't3', (1, 107): 'tau2', (2, 40): 't2', (2, 41): 't2', (1, 96): 'tau3^-1', (2, 33): 'tau3', (1, 102): 'tau2', (2, 29): 't3', (2, 30): 't3', (2, 22): 'tau2^-1', (1, 85): 'tau1^-1', (2, 18): 't1^-1', (2, 19): 't1^-1', (1, 113): 'tau3^-1', (2, 8): 't1^-1', (2, 11): 'tau3', (2, 7): 't1^-1', (2, 0): 'tau2^-1', (1, 63): 'tau1^-1', (1, 91): 'tau3^-1', (1, 41): 'tau3', (1, 47): 'tau1', (1, 30): 'tau2^-1', (1, 69): 'tau1', (2, 77): 'tau1^-1'}