U-tiling: UQC5311
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1892 |
*2244 |
(5,5,2) |
{4,3,4,4,4} |
{5.6.6.5}{5.5.6}{6.6.6.6}{6.6.6.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10614
|
|
P4/nmm |
129 |
tetragonal |
{4,3,4,4,4} |
24 |
(5,5) |
G
|
False
|
|
sqc10620
|
|
I41/a |
88 |
tetragonal |
{4,3,4,4,4} |
24 |
(5,6) |
D
|
False
|
|
sqc10643
|
|
I41/amd |
141 |
tetragonal |
{4,3,4,4,4} |
24 |
(5,5) |
Topological data
Vertex degrees | {4,3,4,4,4} |
2D vertex symbol | {5.6.6.5}{5.5.6}{6.6.6.6}{6.6.6.6}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<122.1:176:67 3 5 7 9 11 78 14 16 18 20 22 89 25 27 29 31 33 111 36 38 40 42 44 122 47 49 51 53 55 100 58 60 62 64 66 69 71 73 75 77 80 82 84 86 88 91 93 95 97 99 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132 166 135 137 139 141 143 155 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 10 6 27 8 31 77 13 21 17 38 19 42 88 24 32 28 30 99 35 43 39 41 121 46 54 50 148 52 152 132 57 65 61 170 63 174 110 68 76 72 104 74 108 79 87 83 126 85 130 90 98 94 137 96 141 101 109 105 107 112 120 116 159 118 163 123 131 127 129 134 142 138 140 176 145 153 149 151 165 156 164 160 162 167 175 171 173,12 4 5 17 18 74 75 32 33 15 16 85 86 43 44 45 26 27 50 51 96 97 56 37 38 61 62 118 119 48 49 129 130 153 154 59 60 107 108 175 176 78 70 71 83 84 109 110 81 82 131 132 122 92 93 127 128 142 143 111 103 104 116 117 114 115 164 165 125 126 155 136 137 160 161 173 174 166 147 148 171 172 162 163 158 159 169 170:5 6 5 6 5 5 5 6 5 6 6 6 6 6 5 5,4 3 4 4 4 3 4 4 4 4 4 4 3 3 4 3 3 4 3 4 3 4 4 4> {(2, 60): 't2^-1', (2, 61): 't2^-1', (2, 62): 't2^-1*tau3', (2, 63): 't2^-1*tau3', (2, 52): 't3^-1*tau2^-1', (2, 55): 't2^-1', (2, 49): 't3^-1', (2, 50): 't3^-1', (2, 51): 't3^-1*tau2^-1', (2, 44): 't3^-1', (2, 173): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 40): 'tau3*t2^-1', (2, 41): 'tau3*t2^-1', (2, 170): 'tau1', (2, 171): 'tau1', (2, 165): 'tau1', (2, 160): 'tau1^-1', (2, 161): 't2*tau3^-1*t1^-1*tau2*t3', (2, 162): 't2*tau3^-1*t1^-1*tau2*t3', (2, 29): 'tau2^-1*t3^-1', (2, 30): 'tau2^-1*t3^-1', (2, 159): 'tau1^-1', (2, 154): 'tau1^-1', (2, 18): 't1^-1', (2, 19): 't1^-1', (2, 8): 't1^-1', (2, 139): 't3*tau2*t1^-1*tau3^-1*t2', (2, 7): 't1^-1', (2, 126): 't3^-1', (2, 127): 't3^-1', (2, 121): 't3^-1', (2, 116): 't2', (2, 115): 't2', (2, 110): 't2'}