U-tiling: UQC5319
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2020 |
*22222 |
(5,6,2) |
{3,3,4,4,4} |
{3.9.3}{3.9.9}{9.9.9.9}{9.9.9.9}... |
s-nets
No items to display.
Topological data
Vertex degrees | {3,3,4,4,4} |
2D vertex symbol | {3.9.3}{3.9.9}{9.9.9.9}{9.9.9.9}{9.9.9.9} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<67.5:192:13 3 5 7 9 11 36 15 17 19 21 23 48 37 27 29 31 33 35 39 41 43 45 47 85 51 53 55 57 59 84 109 63 65 67 69 71 108 121 75 77 79 81 83 87 89 91 93 95 132 133 99 101 103 105 107 111 113 115 117 119 144 123 125 127 129 131 135 137 139 141 143 157 147 149 151 153 155 180 159 161 163 165 167 192 181 171 173 175 177 179 183 185 187 189 191,2 15 28 6 8 10 12 14 40 18 20 22 24 26 39 30 32 34 36 38 42 44 46 48 50 87 76 54 56 58 60 62 111 100 66 68 70 72 74 123 78 80 82 84 86 124 90 92 94 96 98 135 102 104 106 108 110 136 114 116 118 120 122 126 128 130 132 134 138 140 142 144 146 159 172 150 152 154 156 158 184 162 164 166 168 170 183 174 176 178 180 182 186 188 190 192,25 4 5 18 19 32 33 118 119 60 37 16 17 44 45 94 95 72 28 29 42 43 142 143 84 40 41 130 131 108 73 52 53 90 91 80 81 166 167 97 64 65 114 115 104 105 154 155 76 77 126 127 190 191 121 88 89 128 129 156 100 101 138 139 178 179 133 112 113 140 141 168 124 125 180 136 137 192 169 148 149 162 163 176 177 181 160 161 188 189 172 173 186 187 184 185:3 9 9 3 3 9 3 9 3 9 3 9 3 9 9 3,3 3 4 4 4 3 4 4 3 4 4 3 3 4 4 3 3 4 4 3 3 3 3 3 3 4 3 3> {(2, 188): 'tau2^-1*t3^-1', (1, 123): 'tau2*t3', (2, 191): 't1^-1', (2, 56): 't3*tau2', (2, 185): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 60): 't2', (2, 187): 'tau2^-1*t3^-1', (2, 180): 't1^-1*tau3^-1*t2', (2, 53): 't3', (0, 48): 't3', (2, 55): 't3*tau2', (2, 176): 't1*tau3*t2^-1', (2, 177): 't1', (2, 178): 't1', (2, 174): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (2, 175): 't1*tau3*t2^-1', (2, 168): 'tau2*t3', (0, 47): 't1', (1, 111): 't2^-1*tau3', (1, 110): 't2^-1', (2, 36): 't1', (1, 98): 'tau3', (2, 32): 't1^-1', (2, 161): 'tau1', (2, 162): 'tau1', (0, 191): 't1^-1*tau3^-1*t2', (0, 24): 't1^-1', (2, 31): 't1^-1', (0, 156): 'tau1', (2, 42): 't1', (1, 86): 't3^-1', (2, 141): 't1', (2, 142): 't1', (1, 74): 'tau2^-1', (2, 137): 'tau3^-1', (2, 138): 'tau3^-1', (0, 179): 'tau2*t3', (2, 132): 'tau3^-1*t2', (2, 54): 't3', (2, 114): 't2^-1', (2, 125): 'tau2', (0, 120): 'tau2', (2, 120): 'tau2*t3', (2, 103): 'tau3*t2^-1', (0, 119): 't2^-1*tau3', (1, 183): 't1^-1*tau3^-1*t2', (2, 113): 't2^-1', (1, 171): 'tau2*t3', (2, 104): 'tau3*t2^-1', (0, 180): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 126): 'tau2', (0, 96): 'tau3', (1, 182): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (1, 39): 't1', (1, 38): 't1', (0, 95): 't3^-1*tau2^-1', (1, 158): 'tau1', (2, 47): 't1', (2, 41): 't1'}