U-tiling: UQC5320
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2020 |
*22222 |
(5,6,2) |
{3,3,4,4,4} |
{3.9.3}{3.9.9}{9.9.9.9}{9.9.9.9}... |
s-nets
No items to display.
Topological data
Vertex degrees | {3,3,4,4,4} |
2D vertex symbol | {3.9.3}{3.9.9}{9.9.9.9}{9.9.9.9}{9.9.9.9} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<67.1:192:25 3 5 7 9 11 60 37 15 17 19 21 23 72 27 29 31 33 35 84 39 41 43 45 47 108 73 51 53 55 57 59 97 63 65 67 69 71 75 77 79 81 83 121 87 89 91 93 95 156 99 101 103 105 107 133 111 113 115 117 119 168 123 125 127 129 131 180 135 137 139 141 143 192 169 147 149 151 153 155 181 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191,2 27 52 6 8 10 12 14 39 64 18 20 22 24 26 76 30 32 34 36 38 100 42 44 46 48 50 75 54 56 58 60 62 99 66 68 70 72 74 78 80 82 84 86 123 148 90 92 94 96 98 102 104 106 108 110 135 160 114 116 118 120 122 172 126 128 130 132 134 184 138 140 142 144 146 171 150 152 154 156 158 183 162 164 166 168 170 174 176 178 180 182 186 188 190 192,49 4 5 30 31 20 21 34 35 120 61 16 17 42 43 46 47 96 73 28 29 44 45 144 97 40 41 132 52 53 78 79 92 93 82 83 168 64 65 102 103 116 117 106 107 156 76 77 128 129 192 145 88 89 126 127 130 131 100 101 140 141 180 157 112 113 138 139 142 143 169 124 125 181 136 137 148 149 174 175 164 165 178 179 160 161 186 187 190 191 172 173 188 189 184 185:3 9 3 9 9 9 3 3 3 9 3 9 9 9 3 3,3 3 4 4 4 3 3 4 3 3 3 4 4 4 3 4 4 4 3 3 3 3 3 3 3 4 4 3> {(2, 188): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 189): 'tau2^-1*t3^-1', (2, 190): 'tau2^-1*t3^-1', (1, 122): 'tau2*t3', (2, 56): 't3', (2, 185): 't1^-1*tau3^-1*t2', (2, 186): 't1^-1*tau3^-1*t2', (2, 187): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 180): 't1^-1', (2, 57): 't3*tau2', (2, 55): 't3', (2, 177): 't1*tau3*t2^-1', (2, 178): 't1*tau3*t2^-1', (2, 179): 't1', (2, 44): 't1', (2, 173): 'tau2*t3', (0, 168): 'tau2*t3', (0, 47): 't1', (2, 42): 't1', (1, 110): 't2^-1*tau3', (2, 164): 'tau1', (1, 99): 't1^-1', (2, 33): 't1^-1', (2, 34): 't1^-1', (2, 163): 'tau1', (2, 58): 't3*tau2', (2, 150): 't3^-1*tau2^-1', (2, 140): 'tau3^-1', (2, 143): 't1', (2, 137): 'tau3^-1*t2', (0, 12): 't1^-1', (2, 139): 'tau3^-1', (2, 128): 'tau2', (0, 143): 't1', (2, 125): 'tau2*t3', (0, 120): 'tau2*t3', (2, 127): 'tau2', (2, 116): 't2^-1', (2, 43): 't1', (2, 114): 't2^-1*tau3', (1, 182): 't1^-1*tau3^-1*t2', (1, 170): 'tau2*t3', (0, 180): 't1^-1*tau3^-1*t2', (0, 108): 't2^-1*tau3', (2, 126): 'tau2*t3', (2, 115): 't2^-1', (1, 38): 't1', (2, 36): 't1', (2, 105): 'tau3*t2^-1', (1, 135): 't1', (2, 106): 'tau3*t2^-1', (2, 41): 't1'}