U-tiling: UQC539
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc359 |
*22222 |
(2,3,3) |
{10,4} |
{4.3.4.3.4.4.3.4.3.4}{3.4.3.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc999
|
|
P4/mmm |
123 |
tetragonal |
{4,9} |
4 |
(2,3) |
G
|
False
|
|
sqc6344
|
|
I4122 |
98 |
tetragonal |
{10,4} |
8 |
(2,4) |
D
|
False
|
|
sqc1264
|
|
P4222 |
93 |
tetragonal |
{10,4} |
4 |
(2,3) |
Topological data
Vertex degrees | {10,4} |
2D vertex symbol | {4.3.4.3.4.4.3.4.3.4}{3.4.3.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<18.3:112:15 9 10 6 7 22 13 14 23 24 20 21 27 28 43 51 52 34 35 57 65 66 41 42 72 73 48 49 71 55 56 79 80 62 63 78 69 70 76 77 83 84 99 93 94 90 91 106 97 98 107 108 104 105 111 112,2 4 33 13 21 9 11 40 28 16 18 47 27 23 25 61 30 32 55 49 37 39 69 63 44 46 76 51 53 89 77 58 60 83 65 67 96 84 72 74 103 79 81 110 86 88 97 105 93 95 112 100 102 111 107 109,64 3 5 7 50 10 12 14 78 17 19 21 71 24 26 28 92 31 33 35 85 38 40 42 106 45 47 49 52 54 56 99 59 61 63 66 68 70 73 75 77 80 82 84 87 89 91 94 96 98 101 103 105 108 110 112:4 3 4 4 3 4 3 4 3 3 4 3 4 4 3 3,10 4 10 10 10 4 4 4> {(0, 51): 't3^-1', (0, 37): 't2', (0, 105): 'tau2^-1*t3^-1', (1, 90): 't3^-1*tau2^-1', (1, 110): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 107): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 56): 't1^-1', (0, 43): 'tau2^-1', (1, 96): 'tau1', (1, 68): 't2^-1', (1, 33): 't3', (0, 22): 't1', (0, 57): 'tau3', (0, 98): 't1*tau3*t2^-1', (0, 14): 't1^-1', (1, 97): 't2^-1*tau3*t1', (1, 83): 'tau3^-1*t2', (1, 82): 'tau3^-1', (1, 13): 't1^-1', (1, 75): 'tau2', (0, 92): 'tau1', (1, 76): 'tau2*t3', (0, 50): 't3^-1', (1, 109): 't1^-1', (0, 106): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 42): 'tau2^-1*t3^-1', (0, 23): 't1', (1, 26): 't1', (0, 86): 'tau1^-1', (0, 44): 'tau2^-1', (2, 14): 't1^-1', (0, 56): 'tau3*t2^-1', (0, 36): 't2', (1, 60): 't1^-1', (0, 58): 'tau3', }