U-tiling: UQC5391
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2051 |
*2244 |
(5,5,2) |
{3,3,4,8,8} |
{4.5.5}{4.5.5}{5.5.5.5}{5.5.5.5.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc4250
|
|
P4/mmm |
123 |
tetragonal |
{3,3,4,6,6} |
12 |
(5,5) |
G
|
False
|
|
sqc10730
|
|
I41/a |
88 |
tetragonal |
{3,3,4,8,8} |
24 |
(5,6) |
D
|
False
|
|
sqc10754
|
|
I41/amd |
141 |
tetragonal |
{3,3,4,8,8} |
24 |
(5,5) |
Topological data
Vertex degrees | {3,3,4,8,8} |
2D vertex symbol | {4.5.5}{4.5.5}{5.5.5.5}{5.5.5.5.5.5.5.5}{5.5.5.5.5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<38.1:192:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,13 74 5 12 7 9 11 86 17 24 19 21 23 49 98 29 36 31 33 35 61 122 41 48 43 45 47 134 53 60 55 57 59 110 65 72 67 69 71 85 77 84 79 81 83 89 96 91 93 95 133 101 108 103 105 107 121 113 120 115 117 119 125 132 127 129 131 137 144 139 141 143 169 182 149 156 151 153 155 181 170 161 168 163 165 167 173 180 175 177 179 185 192 187 189 191,3 4 17 18 79 80 33 34 83 84 15 16 91 92 45 46 95 96 27 28 53 54 103 104 107 108 39 40 65 66 127 128 131 132 51 52 139 140 165 166 143 144 63 64 115 116 189 190 119 120 75 76 89 90 117 118 87 88 141 142 99 100 137 138 153 154 111 112 125 126 123 124 177 178 135 136 147 148 173 174 187 188 191 192 159 160 185 186 175 176 179 180 171 172 183 184:4 5 5 4 5 4 5 5 5 5 5 5 5 5 5 4 5 5 5 5,3 3 4 8 8 3 8 8 3 3 4 3 3 4 3 3 3 3 3 3 3 4 3 3> {(1, 121): 't2*tau3^-1', (1, 120): 't2', (2, 190): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 191): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 184): 'tau1', (2, 185): 'tau1', (2, 58): 't3^-1*tau2^-1', (2, 59): 't3^-1*tau2^-1', (2, 52): 't3^-1', (2, 53): 't3^-1', (2, 178): 't2*tau3^-1*t1^-1*tau2*t3', (2, 179): 't2*tau3^-1*t1^-1*tau2*t3', (2, 172): 'tau1^-1', (2, 173): 'tau1^-1', (2, 46): 'tau3*t2^-1', (2, 47): 'tau3*t2^-1', (2, 40): 't2', (2, 41): 't2', (1, 97): 't3*tau2', (1, 96): 't3', (2, 34): 'tau2^-1*t3^-1', (2, 35): 'tau2^-1*t3^-1', (2, 22): 't1^-1', (2, 23): 't1^-1', (1, 85): 't1', (1, 73): 't1', (2, 136): 't3^-1', (2, 137): 't3^-1', (2, 10): 't1^-1', (2, 124): 't2', (2, 125): 't2', (1, 61): 't2^-1*tau3', (1, 60): 't2^-1', (1, 49): 't3^-1*tau2^-1', (1, 48): 't3^-1', (2, 118): 'tau3^-1*t2', (2, 119): 'tau3^-1*t2', (1, 180): 'tau1', (1, 169): 't2*tau3^-1*t1^-1*tau2*t3', (1, 168): 'tau1^-1', (1, 145): 't3*tau2*t1^-1*tau3^-1*t2', (2, 83): 't1'}