U-tiling: UQC5392
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc253 |
*446 |
(3,3,2) |
{3,12,4} |
{4.5.5}{5.5.5.5.5.5.5.5.5.5.5.5}... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc8944
|
|
R-3m |
166 |
rhombohedral |
{3,3,12,4,12} |
17 |
(5,5) |
G
|
False
|
|
sqc8565
|
|
R-3m |
166 |
rhombohedral |
{3,3,12,4,12} |
17 |
(5,6) |
D
|
False
|
|
sqc8944
|
|
R-3m |
166 |
rhombohedral |
{3,3,12,4,12} |
17 |
(5,5) |
Topological data
Vertex degrees | {3,3,12,4,12} |
2D vertex symbol | {4.5.5}{4.5.5}{5.5.5.5.5.5.5.5.5.5.5.5}{5.5.5.5}{5.5.5.5.5.5.5.5.5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<20.1:144:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144,109 26 5 12 7 9 11 97 38 17 24 19 21 23 133 29 36 31 33 35 121 41 48 43 45 47 61 74 53 60 55 57 59 86 65 72 67 69 71 85 77 84 79 81 83 89 96 91 93 95 122 101 108 103 105 107 134 113 120 115 117 119 125 132 127 129 131 137 144 139 141 143,3 4 113 114 127 128 21 22 35 36 15 16 101 102 139 140 47 48 27 28 137 138 91 92 57 58 39 40 125 126 79 80 69 70 51 52 65 66 115 116 83 84 63 64 103 104 95 96 75 76 89 90 105 106 87 88 117 118 99 100 131 132 111 112 143 144 123 124 141 142 135 136:4 5 4 5 5 5 4 5 5 5 5 5 5 5 5,3 3 12 4 12 3 3 3 4 3 4 3 3 3 3 3 3> {(1, 120): 'tau3^-1', (2, 52): 'tau1', (2, 53): 'tau1', (2, 54): 't3', (2, 55): 't3', (2, 17): 'tau3', (2, 40): 'tau3', (2, 41): 'tau3', (2, 42): 't2', (2, 43): 't2', (1, 96): 'tau3^-1', (2, 28): 'tau2^-1', (2, 29): 'tau2^-1', (2, 30): 't3', (2, 31): 't3', (2, 16): 'tau3', (1, 84): 'tau1^-1', (2, 18): 't1^-1', (2, 19): 't1^-1', (2, 4): 'tau2^-1', (2, 5): 'tau2^-1', (2, 6): 't1^-1', (2, 7): 't1^-1', (1, 60): 'tau1^-1', (2, 102): 't2^-1', (2, 103): 't2^-1', (1, 24): 'tau2^-1', (2, 88): 'tau1^-1', (2, 89): 'tau1^-1', (1, 0): 'tau2^-1'}