U-tiling: UQC5399
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2052 |
*22222 |
(5,5,2) |
{3,6,4,4,4} |
{4.5.5}{4.5.5.4.5.5}{5.5.5.5}{5.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10818
|
|
P4/mmm |
123 |
tetragonal |
{3,6,4,4,4} |
24 |
(5,5) |
G
|
False
|
|
sqc10842
|
|
I4122 |
98 |
tetragonal |
{3,6,4,4,4} |
24 |
(5,6) |
D
|
False
|
|
sqc5376
|
|
P4222 |
93 |
tetragonal |
{4,4,3,4,6} |
12 |
(5,5) |
Topological data
Vertex degrees | {3,6,4,4,4} |
2D vertex symbol | {4.5.5}{4.5.5.4.5.5}{5.5.5.5}{5.5.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<16.3:192:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,109 26 5 12 7 9 11 85 38 17 24 19 21 23 133 29 36 31 33 35 121 41 48 43 45 47 157 74 53 60 55 57 59 145 98 65 72 67 69 71 181 77 84 79 81 83 122 89 96 91 93 95 169 101 108 103 105 107 134 113 120 115 117 119 125 132 127 129 131 137 144 139 141 143 170 149 156 151 153 155 182 161 168 163 165 167 173 180 175 177 179 185 192 187 189 191,3 4 113 114 55 56 33 34 23 24 15 16 89 90 67 68 45 46 27 28 137 138 79 80 47 48 39 40 125 126 103 104 51 52 161 162 81 82 95 96 63 64 149 150 105 106 119 120 75 76 185 186 131 132 87 88 151 152 129 130 99 100 173 174 143 144 111 112 163 164 141 142 123 124 175 176 135 136 187 188 147 148 177 178 167 168 159 160 189 190 171 172 191 192 183 184:4 5 4 5 5 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5,3 6 4 4 4 3 4 4 3 4 3 4 3 6 4 3 6 4 3 4 3 4 6 4> {(2, 188): 't1^-1*tau3^-1*t2', (2, 189): 't1^-1*tau3^-1*t2', (2, 190): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 191): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 58): 't3', (2, 59): 't3', (2, 176): 'tau2*t3', (2, 177): 'tau2*t3', (2, 44): 't1', (2, 45): 't1', (2, 46): 't1', (2, 47): 't1', (2, 42): 't1', (2, 43): 't1', (1, 96): 't1^-1', (2, 166): 'tau1', (2, 167): 'tau1', (2, 28): 't1^-1', (2, 29): 't1^-1', (2, 187): 't1^-1', (2, 140): 'tau3^-1*t2', (2, 143): 'tau3^-1', (2, 138): 't1', (2, 128): 'tau2*t3', (2, 129): 'tau2*t3', (2, 130): 'tau2', (2, 131): 'tau2', (1, 61): 't2*tau3^-1', (1, 49): 't3*tau2', (2, 117): 't2^-1*tau3', (2, 119): 't2^-1', (1, 181): 'tau2^-1*t3^-1', (1, 169): 't1*tau3*t2^-1', (2, 106): 'tau3', (2, 100): 't1^-1', (2, 101): 't1^-1', (1, 25): 't1^-1', (1, 24): 't1^-1', (2, 70): 't2'}