U-tiling: UQC5401
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2052 |
*22222 |
(5,5,2) |
{3,6,4,4,4} |
{4.5.5}{4.5.5.4.5.5}{5.5.5.5}{5.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10852
|
|
P4/mmm |
123 |
tetragonal |
{3,6,4,4,4} |
24 |
(5,5) |
G
|
False
|
|
sqc10853
|
|
I4122 |
98 |
tetragonal |
{3,6,4,4,4} |
24 |
(5,6) |
D
|
False
|
|
sqc5154
|
|
P4222 |
93 |
tetragonal |
{4,4,6,4,3} |
12 |
(5,5) |
Topological data
Vertex degrees | {3,6,4,4,4} |
2D vertex symbol | {4.5.5}{4.5.5.4.5.5}{5.5.5.5}{5.5.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<16.2:192:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,49 110 5 12 7 9 11 61 86 17 24 19 21 23 73 134 29 36 31 33 35 97 122 41 48 43 45 47 158 53 60 55 57 59 146 65 72 67 69 71 182 77 84 79 81 83 145 89 96 91 93 95 170 101 108 103 105 107 157 113 120 115 117 119 169 125 132 127 129 131 181 137 144 139 141 143 149 156 151 153 155 161 168 163 165 167 173 180 175 177 179 185 192 187 189 191,3 4 53 54 31 32 21 22 35 36 15 16 65 66 43 44 47 48 27 28 77 78 45 46 39 40 101 102 51 52 79 80 93 94 83 84 63 64 103 104 117 118 107 108 75 76 129 130 87 88 149 150 127 128 131 132 99 100 141 142 111 112 161 162 139 140 143 144 123 124 173 174 135 136 185 186 147 148 175 176 165 166 179 180 159 160 187 188 191 192 171 172 189 190 183 184:4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5,3 6 4 4 4 3 6 4 3 3 6 4 4 6 4 4 3 4 3 4 3 3 4 4> {(2, 188): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 189): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 190): 'tau2^-1*t3^-1', (2, 191): 'tau2^-1*t3^-1', (2, 56): 't3', (2, 57): 't3', (2, 58): 't3*tau2', (2, 59): 't3*tau2', (2, 178): 't1*tau3*t2^-1', (2, 179): 't1*tau3*t2^-1', (2, 44): 't1', (2, 45): 't1', (2, 174): 'tau2*t3', (2, 175): 'tau2*t3', (2, 40): 't1', (2, 41): 't1', (2, 42): 't1', (2, 43): 't1', (1, 97): 't1^-1', (2, 165): 'tau1', (2, 162): 't2^-1*tau3*t1', (2, 163): 't2^-1*tau3*t1', (2, 152): 'tau1^-1', (2, 140): 'tau3^-1', (2, 141): 'tau3^-1', (2, 137): 't1', (2, 10): 't1', (2, 11): 't1', (2, 128): 'tau2', (2, 129): 'tau2', (2, 126): 'tau2*t3', (2, 127): 'tau2*t3', (2, 138): 'tau3^-1*t2', (2, 116): 't2^-1', (2, 117): 't2^-1', (2, 139): 'tau3^-1*t2', (1, 180): 't1^-1', (2, 106): 'tau3*t2^-1', (2, 107): 'tau3*t2^-1', (1, 36): 't1', (2, 184): 't1^-1', (1, 25): 't1^-1'}