U-tiling: UQC5444
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2081 |
*2244 |
(5,5,2) |
{4,4,3,8,4} |
{8.8.8.8}{8.4.4.8}{8.4.4}{4.4.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10998
|
|
P42/mmc |
131 |
tetragonal |
{4,4,3,8,4} |
24 |
(5,5) |
G
|
False
|
|
sqc11010
|
|
I-42d |
122 |
tetragonal |
{4,4,3,8,4} |
24 |
(5,6) |
D
|
False
|
|
sqc5358
|
|
P-42m |
111 |
tetragonal |
{4,3,4,8,4} |
12 |
(5,5) |
Topological data
Vertex degrees | {4,4,3,8,4} |
2D vertex symbol | {8.8.8.8}{8.4.4.8}{8.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<44.1:192:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,73 3 100 7 12 9 11 85 15 112 19 24 21 23 37 27 124 31 36 33 35 39 136 43 48 45 47 61 51 148 55 60 57 59 63 160 67 72 69 71 75 172 79 84 81 83 87 184 91 96 93 95 169 99 103 108 105 107 181 111 115 120 117 119 133 123 127 132 129 131 135 139 144 141 143 157 147 151 156 153 155 159 163 168 165 167 171 175 180 177 179 183 187 192 189 191,25 26 5 6 31 32 21 22 107 108 37 38 17 18 43 44 119 120 29 30 57 58 131 132 41 42 69 70 143 144 73 74 53 54 79 80 155 156 85 86 65 66 91 92 167 168 77 78 93 94 179 180 89 90 191 192 121 122 101 102 127 128 117 118 133 134 113 114 139 140 125 126 153 154 137 138 165 166 169 170 149 150 175 176 181 182 161 162 187 188 173 174 189 190 185 186:8 4 8 4 8 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4,4 4 3 8 4 4 3 3 4 3 4 4 3 4 3 3 4 3 4 4 8 4 4 4> {(2, 60): 't3*tau2*t3', (2, 61): 't3*tau2*t3', (2, 186): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 187): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 180): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 181): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 54): 't3', (2, 55): 't3', (2, 48): 't3', (2, 49): 't3', (2, 145): 'tau1', (2, 44): 't1*tau2^-1*t3^-1', (2, 45): 't1*tau2^-1*t3^-1', (2, 174): 'tau1^-1', (2, 175): 'tau1^-1', (2, 168): 'tau1^-1', (1, 108): 't1^-1*tau2*t3', (2, 42): 't1', (2, 43): 't1', (2, 164): 't3*tau2*t1^-1', (2, 165): 't3*tau2*t1^-1', (1, 84): 't3^-1*tau2^-1*t1', (2, 12): 't1^-1', (2, 13): 't1^-1', (2, 138): 'tau3^-1', (2, 139): 'tau3^-1', (2, 132): 'tau3^-1', (2, 133): 'tau3^-1', (2, 126): 't2^-1', (2, 127): 't2^-1', (2, 120): 't2^-1', (2, 121): 't2^-1', (2, 90): 't3^-1*tau2^-1*t3^-1', (2, 91): 't3^-1*tau2^-1*t3^-1'}