U-tiling: UQC5445
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2081 |
*2244 |
(5,5,2) |
{4,4,3,8,4} |
{8.8.8.8}{8.4.4.8}{8.4.4}{4.4.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10999
|
|
P4/nmm |
129 |
tetragonal |
{4,4,3,8,4} |
24 |
(5,5) |
G
|
False
|
|
sqc11011
|
|
I41/a |
88 |
tetragonal |
{4,4,3,8,4} |
24 |
(5,6) |
D
|
False
|
|
sqc11008
|
|
I41/amd |
141 |
tetragonal |
{4,4,3,8,4} |
24 |
(5,5) |
Topological data
Vertex degrees | {4,4,3,8,4} |
2D vertex symbol | {8.8.8.8}{8.4.4.8}{8.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<44.1:192:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,73 3 16 7 12 9 11 85 15 19 24 21 23 97 27 52 31 36 33 35 121 39 64 43 48 45 47 133 51 55 60 57 59 109 63 67 72 69 71 75 88 79 84 81 83 87 91 96 93 95 99 136 103 108 105 107 111 124 115 120 117 119 123 127 132 129 131 135 139 144 141 143 181 147 172 151 156 153 155 169 159 184 163 168 165 167 171 175 180 177 179 183 187 192 189 191,25 26 5 6 31 32 81 82 23 24 37 38 17 18 43 44 93 94 29 30 105 106 59 60 41 42 129 130 71 72 157 158 53 54 163 164 141 142 181 182 65 66 187 188 117 118 109 110 77 78 115 116 95 96 133 134 89 90 139 140 145 146 101 102 151 152 143 144 113 114 131 132 169 170 125 126 175 176 137 138 149 150 189 190 179 180 161 162 177 178 191 192 173 174 185 186:8 4 4 8 4 8 4 4 4 4 4 4 4 4 4 8 4 4 4 4,4 4 3 8 4 4 4 8 3 4 3 4 4 4 4 3 4 4 3 3 4 3 4 3> {(2, 188): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 189): 't2^-1*tau3*t1*tau2^-1*t3^-1', (1, 123): 't2', (2, 191): 'tau1', (2, 56): 't3^-1*tau2^-1', (2, 57): 't3^-1*tau2^-1', (2, 58): 't3^-1', (2, 59): 't3^-1', (2, 176): 't2*tau3^-1*t1^-1*tau2*t3', (2, 177): 't2*tau3^-1*t1^-1*tau2*t3', (2, 178): 'tau1^-1', (2, 179): 'tau1^-1', (2, 44): 'tau3*t2^-1', (2, 45): 'tau3*t2^-1', (2, 46): 't2', (2, 47): 't2', (1, 99): 't3', (2, 32): 'tau2^-1*t3^-1', (2, 33): 'tau2^-1*t3^-1', (2, 166): 'tau1^-1', (2, 20): 't1^-1', (2, 21): 't1^-1', (2, 142): 't3^-1', (2, 143): 't3^-1', (2, 8): 't1^-1', (2, 9): 't1^-1', (2, 130): 't2', (2, 131): 't2', (1, 63): 't2^-1', (2, 116): 'tau3^-1*t2', (2, 117): 'tau3^-1*t2', (1, 51): 't3^-1', (1, 183): 'tau1', (1, 171): 'tau1^-1'}