U-tiling: UQC5489
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2112 |
*2244 |
(5,5,2) |
{4,8,4,3,4} |
{12.12.12.12}{12.12.12.12.12.12.... |
s-nets
No items to display.
Topological data
Vertex degrees | {4,8,4,3,4} |
2D vertex symbol | {12.12.12.12}{12.12.12.12.12.12.12.12}{12.3.3.12}{12.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<50.1:192:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,73 3 5 18 9 12 11 85 15 17 21 24 23 97 27 29 54 33 36 35 121 39 41 66 45 48 47 133 51 53 57 60 59 109 63 65 69 72 71 75 77 90 81 84 83 87 89 93 96 95 99 101 138 105 108 107 111 113 126 117 120 119 123 125 129 132 131 135 137 141 144 143 181 147 149 174 153 156 155 169 159 161 186 165 168 167 171 173 177 180 179 183 185 189 192 191,25 26 75 76 7 8 81 82 23 24 37 38 87 88 19 20 93 94 99 100 31 32 105 106 59 60 123 124 43 44 129 130 71 72 157 158 135 136 55 56 141 142 181 182 111 112 67 68 117 118 109 110 79 80 95 96 133 134 91 92 145 146 103 104 143 144 115 116 131 132 169 170 127 128 139 140 183 184 151 152 189 190 179 180 171 172 163 164 177 178 191 192 175 176 187 188:12 3 3 12 3 12 3 3 3 3 3 3 3 3 3 12 3 3 3 3,4 8 4 3 4 4 8 4 4 3 4 4 3 4 4 4 3 3 3 4 3 4 4 3> {(2, 188): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 189): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 190): 'tau1', (2, 191): 'tau1', (1, 125): 't2', (2, 58): 't3^-1', (2, 59): 't3^-1', (2, 182): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 183): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 176): 't2*tau3^-1*t1^-1*tau2*t3', (2, 177): 't2*tau3^-1*t1^-1*tau2*t3', (2, 178): 'tau1^-1', (2, 179): 'tau1^-1', (2, 46): 't2', (2, 63): 't2^-1*tau3', (2, 15): 't1^-1', (2, 170): 't2*tau3^-1*t1^-1*tau2*t3', (2, 171): 't2*tau3^-1*t1^-1*tau2*t3', (2, 38): 'tau3*t2^-1', (2, 39): 'tau3*t2^-1', (1, 101): 't3', (2, 33): 'tau2^-1*t3^-1', (2, 26): 'tau2^-1*t3^-1', (2, 27): 'tau2^-1*t3^-1', (2, 20): 't1^-1', (2, 32): 'tau2^-1*t3^-1', (2, 14): 't1^-1', (2, 140): 'tau2*t3', (2, 141): 'tau2*t3', (2, 142): 't3^-1', (2, 143): 't3^-1', (2, 8): 't1^-1', (2, 9): 't1^-1', (1, 65): 't2^-1', (2, 134): 'tau2*t3', (2, 135): 'tau2*t3', (2, 128): 't2*tau3^-1', (2, 129): 't2*tau3^-1', (2, 130): 't2', (2, 131): 't2', (1, 185): 'tau1', (2, 116): 'tau3^-1*t2', (2, 117): 'tau3^-1*t2', (1, 53): 't3^-1', (1, 173): 'tau1^-1', (2, 62): 't2^-1*tau3', (2, 47): 't2', (2, 2): 't1^-1', (2, 21): 't1^-1', (2, 3): 't1^-1'}