U-tiling: UQC5640
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2236 |
*2244 |
(5,6,2) |
{8,4,3,8,4} |
{5.5.5.5.5.5.5.5}{5.4.4.5}{5.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11329
|
|
P4/nmm |
129 |
tetragonal |
{8,4,3,8,4} |
24 |
(5,6) |
G
|
False
|
|
sqc11315
|
|
I41/a |
88 |
tetragonal |
{8,4,3,8,4} |
24 |
(5,7) |
D
|
False
|
|
sqc11318
|
|
I41/amd |
141 |
tetragonal |
{8,4,3,8,4} |
24 |
(5,6) |
Topological data
Vertex degrees | {8,4,3,8,4} |
2D vertex symbol | {5.5.5.5.5.5.5.5}{5.4.4.5}{5.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<56.1:208:14 3 5 7 9 11 13 16 18 20 22 24 26 53 29 31 33 35 37 39 66 42 44 46 48 50 52 55 57 59 61 63 65 68 70 72 74 76 78 92 81 83 85 87 89 91 94 96 98 100 102 104 144 107 109 111 113 115 117 131 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156 183 159 161 163 165 167 169 196 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208,2 4 18 8 13 10 12 15 17 21 26 23 25 28 30 57 34 39 36 38 41 43 70 47 52 49 51 54 56 60 65 62 64 67 69 73 78 75 77 80 82 96 86 91 88 90 93 95 99 104 101 103 106 108 148 112 117 114 116 119 121 135 125 130 127 129 132 134 138 143 140 142 145 147 151 156 153 155 158 160 187 164 169 166 168 171 173 200 177 182 179 181 184 186 190 195 192 194 197 199 203 208 205 207,79 28 29 6 7 34 35 88 89 25 26 92 41 42 19 20 47 48 101 102 105 32 33 114 115 64 65 131 45 46 140 141 77 78 144 171 172 58 59 177 178 153 154 118 197 198 71 72 203 204 127 128 119 120 84 85 125 126 103 104 145 146 97 98 151 152 158 159 110 111 164 165 155 156 123 124 142 143 184 185 136 137 190 191 149 150 196 162 163 205 206 194 195 183 175 176 192 193 207 208 188 189 201 202:5 4 4 5 4 5 4 4 4 5 4 4 5 4 5 4 4 4 5 4 5 4 4 4,8 4 3 8 4 8 4 8 3 4 3 4 4 4 4 3 4 4 3 3 4 3 4 3> {(1, 121): 't2^-1', (2, 63): 't3^-1', (2, 180): 'tau1^-1', (2, 181): 'tau1^-1', (2, 182): 't2*tau3^-1*t1^-1*tau2*t3', (0, 182): 'tau1^-1', (2, 50): 't2', (2, 51): 't2', (0, 169): 'tau1^-1', (2, 168): 'tau1', (1, 108): 't3', (2, 38): 't3', (2, 167): 'tau1', (0, 39): 't2', (0, 26): 't3', (2, 39): 'tau3*t2^-1', (2, 26): 'tau2^-1*t3^-1', (2, 13): 't1^-1', (2, 52): 't3^-1*tau2^-1', (2, 142): 't2', (0, 143): 't3^-1', (0, 130): 't2', (1, 69): 't2^-1', (1, 56): 't3^-1', (1, 186): 'tau1^-1', (2, 116): 't3', (2, 117): 'tau3^-1*t2', (2, 115): 't3', (1, 173): 'tau1^-1', (2, 156): 't3*tau2*t1^-1*tau3^-1*t2', (2, 128): 't2^-1', (2, 78): 't1'}