U-tiling: UQC5731
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2264 |
*2244 |
(5,6,2) |
{4,4,4,8,4} |
{7.3.3.7}{7.7.3.3}{3.3.3.3}{7.7.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc11322
|
|
I-42d |
122 |
tetragonal |
{4,4,4,8,4} |
24 |
(5,7) |
D
|
False
|
|
sqc5727
|
|
P-42m |
111 |
tetragonal |
{4,4,4,8,4} |
12 |
(5,6) |
Topological data
Vertex degrees | {4,4,4,8,4} |
2D vertex symbol | {7.3.3.7}{7.7.3.3}{3.3.3.3}{7.7.7.7.7.7.7.7}{7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<60.1:208:79 3 5 7 9 11 13 92 16 18 20 22 24 26 40 29 31 33 35 37 39 42 44 46 48 50 52 66 55 57 59 61 63 65 68 70 72 74 76 78 81 83 85 87 89 91 94 96 98 100 102 104 183 107 109 111 113 115 117 196 120 122 124 126 128 130 144 133 135 137 139 141 143 146 148 150 152 154 156 170 159 161 163 165 167 169 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208,2 10 6 9 8 12 91 15 23 19 22 21 25 104 28 36 32 35 34 38 52 41 49 45 48 47 51 54 62 58 61 60 64 78 67 75 71 74 73 77 80 88 84 87 86 90 93 101 97 100 99 103 106 114 110 113 112 116 195 119 127 123 126 125 129 208 132 140 136 139 138 142 156 145 153 149 152 151 155 158 166 162 165 164 168 182 171 179 175 178 177 181 184 192 188 191 190 194 197 205 201 204 203 207,105 4 5 110 111 21 22 23 24 38 39 118 17 18 123 124 51 52 131 30 31 136 137 60 61 62 63 144 43 44 149 150 73 74 75 76 157 56 57 162 163 90 91 170 69 70 175 176 103 104 183 82 83 188 189 99 100 101 102 196 95 96 201 202 108 109 125 126 127 128 142 143 121 122 155 156 134 135 164 165 166 167 147 148 177 178 179 180 160 161 194 195 173 174 207 208 186 187 203 204 205 206 199 200:7 3 7 3 7 3 3 7 3 3 3 3 7 3 7 3 7 3 3 7 3 3 3 3,4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 4 4 4 4> {(2, 63): 't3', (2, 180): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (2, 181): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (2, 48): 't1*tau2^-1*t3^-1', (2, 49): 't1*tau2^-1*t3^-1', (2, 50): 't1', (2, 51): 't1', (2, 46): 't1*tau2^-1*t3^-1', (2, 47): 't1*tau2^-1*t3^-1', (2, 168): 'tau1', (2, 167): 'tau1', (1, 103): 't3^-1*tau2^-1*t1', (2, 154): 'tau3^-1', (2, 155): 'tau3^-1', (2, 150): 't1*tau2^-1*t3^-1', (2, 151): 't1*tau2^-1*t3^-1', (2, 141): 't2^-1', (2, 142): 't2^-1', (1, 207): 't3^-1*tau2^-1*t1', (0, 13): 't1^-1*tau2*t3', (0, 117): 't1^-1*tau2*t3', (2, 178): 't3*tau2*t1^-1', (2, 179): 't3*tau2*t1^-1', (2, 102): 't3^-1*tau2^-1*t3^-1', (2, 103): 't3^-1*tau2^-1*t3^-1', (2, 90): 't3^-1'}