U-tiling: UQC58
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc15 |
*24(12) |
(1,1,1) |
{4} |
{12.12.12.12} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc29
|
mot
|
P4/mmm |
123 |
tetragonal |
{4,4} |
3 |
(2,2) |
G
|
False
|
|
sqc965
|
|
I41/a |
88 |
tetragonal |
{4,4} |
6 |
(2,2) |
D
|
False
|
|
sqc964
|
|
I41/amd |
141 |
tetragonal |
{4,4} |
6 |
(2,2) |
Topological data
Vertex degrees | {4,4} |
2D vertex symbol | {12.12.12.12}{12.12.12.12} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<2.1:48:19 3 22 6 25 9 31 12 34 15 28 18 21 24 27 30 33 36 46 39 43 42 45 48,2 9 5 12 8 11 14 42 17 48 20 30 23 36 26 39 29 32 45 35 38 41 44 47,4 20 21 23 24 13 26 27 16 32 33 35 36 29 30 22 34 31 43 47 48 46 44 45:12 12,4 4 4 4 4 4> {(2, 44): 't2*tau3^-1*t1^-1*tau2*t3', (2, 45): 'tau1', (2, 46): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 47): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 40): 't3^-1*tau2^-1*t1*tau3*t2^-1', (2, 42): 'tau1^-1', (2, 32): 't2*tau3^-1', (2, 33): 't3^-1', (2, 34): 'tau2*t3', (2, 35): 'tau2*t3', (2, 28): 'tau3^-1*t2', (2, 29): 'tau3^-1*t2', (2, 30): 't2', (2, 31): 't2*tau3^-1', (2, 25): 't3*tau2', (2, 26): 't3*tau2', (2, 20): 't1', (2, 22): 't1', (2, 23): 't1', (2, 19): 't1', (2, 12): 't3^-1', (2, 15): 't2^-1'}