U-tiling: UQC5818
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2375 |
*2244 |
(5,6,2) |
{4,4,16,8,4} |
{3.3.3.3}{3.4.4.3}{3.4.4.3.3.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11757
|
|
P42/mmc |
131 |
tetragonal |
{4,4,16,8,4} |
20 |
(5,6) |
G
|
False
|
|
sqc11742
|
|
I-42d |
122 |
tetragonal |
{4,4,16,8,4} |
20 |
(5,7) |
D
|
False
|
|
sqc6394
|
|
P-42m |
111 |
tetragonal |
{4,4,4,8,16} |
10 |
(5,6) |
Topological data
Vertex degrees | {4,4,16,8,4} |
2D vertex symbol | {3.3.3.3}{3.4.4.3}{3.4.4.3.3.4.4.3.3.4.4.3.3.4.4.3}{4.4.4.4.4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<3.1:224:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224,3 6 5 9 14 11 13 17 20 19 23 28 25 27 31 34 33 37 42 39 41 45 48 47 51 56 53 55 59 62 61 65 70 67 69 73 76 75 79 84 81 83 87 90 89 93 98 95 97 101 104 103 107 112 109 111 115 118 117 121 126 123 125 129 132 131 135 140 137 139 143 146 145 149 154 151 153 157 160 159 163 168 165 167 171 174 173 177 182 179 181 185 188 187 191 196 193 195 199 202 201 205 210 207 209 213 216 215 219 224 221 223,113 114 17 18 7 8 37 38 95 96 125 126 127 128 21 22 51 52 109 110 139 140 141 142 59 60 35 36 53 54 153 154 155 156 73 74 49 50 167 168 169 170 63 64 93 94 81 82 181 182 183 184 77 78 107 108 195 196 197 198 101 102 91 92 209 210 211 212 105 106 223 224 129 130 119 120 149 150 207 208 133 134 163 164 221 222 171 172 147 148 165 166 185 186 161 162 175 176 205 206 193 194 189 190 219 220 213 214 203 204 217 218:3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4,4 4 16 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16 8> {(2, 190): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (2, 191): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (2, 184): 't3*tau2*t1^-1', (2, 185): 't3*tau2*t1^-1', (2, 176): 'tau1', (2, 177): 'tau1', (2, 50): 't1', (2, 51): 't1', (2, 44): 't1*tau2^-1*t3^-1', (2, 45): 't1*tau2^-1*t3^-1', (2, 162): 'tau3^-1', (2, 163): 'tau3^-1', (2, 24): 't1^-1*tau2*t3', (2, 25): 't1^-1*tau2*t3', (2, 148): 't2^-1', (2, 149): 't2^-1', (2, 136): 't1^-1*tau2*t3', (2, 137): 't1^-1*tau2*t3', (2, 106): 't3^-1*tau2^-1*t3^-1', (2, 107): 't3^-1*tau2^-1*t3^-1', (2, 92): 't3^-1', (2, 93): 't3^-1'}